Activation of ore process waste for preparation of consolidating mixtures

DOI: https://doi.org/10.30686/1609-9192-2025-3-67-70

Читать на русскоя языкеV.I. Golik
Moscow Polytechnic University, Moscow, Russian Federation

Russian Mining Industry №3 / 2025 p. 67-70

Abstract: The article discusses the challenge of providing mining operations with raw materials for preparation of consolidating stowing in mining ore deposits using the underground method, the relevance of which increases with the complexity of the conditions for mining raw materials and the scientific and technical progress. The result of reviewing the theory and practice of managing the stressed state of the rock mass with preservation of the environmental ecosystems is presented. The results of multifactorial studies of using the DESI-11 activator-disintegrator are given. The expediency to use the physical and chemical processes of mechanochemical activation of the metal-containing raw materials is justified which allows using tailings of primary ore processing as binding components. The possibility has been proved of extracting metals and obtaining consolidating stowing of sufficient normative strength based on binders and fillers made of ore processing tailings. It is shown that after their activation in the disintegrator, process tailings can be used without restrictions, including those of the sanitary requirements, which creates a significant ecological and ecological effect. Activation of the process tailings opens up the prospects to use environmentally friendly mining systems with backfilling of the mined-out space with consolidating stowing by creating a practically unlimited source of binders and inert components for consolidating stowing. The parameters of mechanochemical activation of the ore process tailings have been optimized.

Keywords: ore, consolidating stowing, underground mining, disintegrator, process tailings, metals, mechanochemistry, leaching

For citation: Golik V.I. Activation of ore process waste for preparation of consolidating mixtures. Russian Mining Industry. 2025;(3):67–70. (In Russ.) https://doi.org/10.30686/1609-9192-2025-3-67-70


Article info

Received: 21.02.2025

Revised: 10.04.2025

Accepted: 14.04.2025


Information about the author

Vladimir I. Golik – Dr. Sci. (Eng.), Professor of the Department of Metallurgy, Moscow Polytechnic University, Moscow, Russian Federation; https://orcid.org/0000-0002-1181-8452; e-mail: v.i.golik@mail.ru


References

1. Игнатьева М.Н., Юрак В.В., Душин А.В., Стровский В.Е. Техногенные минеральные образования: проблемы перехода к циркулярной экономике. Горные науки и технологии. 2021;6(2):73–89. https://doi.org/10.17073/2500-0632-2021-2-73-89 Ignatyeva M.N., Yurak V.V., Dushin A.V., Strovsky V.E. Technogenic mineral accumulations: problems of transition to circular economy. Mining Science and Technology (Russia). 2021;6(2):73–89. https://doi.org/10.17073/2500-0632-2021-2-73-89

2. Яицкая Н.А., Бригида В.С. Геоинформационные технологии при решении трехмерных геоэкологических задач: пространственная интерполяция данных. Геология и геофизика Юга России. 2022;12(1):162–173. https://doi.org/10.46698/VNC.2022.86.27.012 Yaitskaya N.A., Brigida V.S. Geoinformation technologies in solving three-dimensional geoecological problems. Spatial data interpolation. Geology and Geophysics of Russian South. 2022;12(1):162–173. (In Russ.) https://doi.org/10.46698/VNC.2022.86.27.012

3. Вержанский А.П. Проблемы освоения техногенных минеральных ресурсов в России. Горный журнал. 2016;(7):105–106. Verzhansky A.P. Problems of the development of technogenic mineral resources in Russia. Gornyi Zhurnal. 2016;(7):105–106. (In Russ.)

4. Комащенко В.И., Васильев П.В., Масленников С.А. Технологиям подземной разработки месторождений КМА – надежную сырьевую основу. Известия Тульского государственного университета. Науки о Земле. 2016;(2):101–114. Komashenko V.I., Vsiliev P.V., Maslennikov S.A. Dependable raw materials base for underground mining the KMA deposits. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Tekhnicheskie Nauki. 2016;(2):101–114. (In Russ.)

5. Валиев Н.Г., Пропп В.Д., Абрамкин Н.И., Камболов Д.А. Практика применения выщелачивания металлов из некондиционного сырья и отходов обогащения руд. Горный информационно-аналитический бюллетень. 2023;(12-1):17–30. https://doi.org/10.25018/0236_1493_2023_121_0_17 Valiev N.G., Propp V.D., Abramkin N.I., Kambolov D.A. The practice of leaching metals from substandard raw materials and ore dressing waste. Mining Informational and Analytical Bulletin. 2023;(12-1):17–30. (In Russ.) https://doi.org/10.25018/0236_1493_2023_121_0_17

6. Wang L., Zhang X.-F. Correlation of ground surface subsidence characteristics and mining disasters under super-thick overlying strata. Journal of China Coal Society. 2009;34(8):1048–1051. (In Chinese).

7. Голик В.И. Концептуальные подходы к созданию мало- и безотходного горнорудного производства на основе комбинирования физико-технических и физико-химических геотехнологий. Горный журнал. 2013;(5):93–97. Golik V.I. Conceptual approaches to the creation of low waste and wasteless mining production on the basis of combination of physical-technical and physical-chemical geotechnologies. Gornyi Zhurnal. 2013;(5):93–97. (In Russ.)

8. Голик В.И. Извлечение металлов из хвостов обогащения комбинированными методами активации. Обогащение руд. 2010;(5):38–40. Golik V.I. Metals recovery from mineral processing tailings by combined activation methods. Obogashchenie Rud. 2010;(5):38–40. (In Russ.)

9. Golik V.I., Razorenov Y.I., Polukhin O.N. Metal extraction from ore benefication codas by means of lixiviation in a disintegrator. International Journal of Applied Engineering Research. 2015;10(17):38105–38109. Available at: http://dspace.bsu.edu.ru/handle/123456789/12569 (accessed: 11.02.2025).

10. He M.-С., Xie H.-Р., Peng S.-Р., Jiang Y.-D. Study on rock mechanics in deep mining engineering. Chinese Journal of Rock Mechanics and Engineering. 2005;24(16):2803–2813. (In Chinese).

11. Каунг П.А., Исаков А.Е., Панфилов И.А., Тынченко В.В., Ступина А.А. Принципы формирования экологически безопасного и экономически эффективного устойчивого освоения георесурсов. Горный информационно-аналитический бюллетень. 2024;(7-1):159–175. Режим доступа: https://giab-online.ru/files/Data/2024/7/7-1_2024_159-175.pdf (дата обращения: 11.02.2025). Kaung P.A., Isakov A.E., Panfilov I.A., Tynchenko V.V., Stupina A.A. Principles for forming environmentally safe and economically effective sustainable development of geo resources. Mining Informational and Analytical Bulletin. 2024; (7-1):159–175. (In Russ.) Available at: https://giab-online.ru/files/Data/2024/7/7-1_2024_159-175.pdf (accessed: 11.02.2025).

12. Sokolov A.A., Fomenko V.A., Aksenova M.A., Martyushev N.V., Malozyemov B.V., Kerimzhanova M.F. Development of a methodology for radon pollution studies based on algorithms taking into account the influence of constant mountain-valley winds. Applied Chemical Engineering. 2024;7(2):1865. https://doi.org/10.59429/ace.v7i2.1865

13. Куликова Е.Ю., Баловцев С.В., Скопинцева О.В. Комплексная оценка геоэкологических рисков при ведении открытых и подземных горных работ. Устойчивое развитие горных территорий. 2024;16(1):205–216. https://doi.org/10.21177/1998-4502-2024-16-1-205-216 Kulikova E.Yu., Balovtsev S.V., Skopintseva O.V. Comprehensive assessment of geoecological risks in conducting open and underground mining. Sustainable Development of Mountain Territories. 2024;16(1):205–216. (In Russ.) https://doi.org/10.21177/1998-4502-2024-16-1-205-216

14. Bosikov I.I., Klyuev R.V., Dmitrak Yu.V. Analysis of hazardous processes in the natural industrial system. In: Litvinenko V. (ed.). Advances in raw material industries for sustainable development goals. London: CRC Press; 2020. pp. 422–429. https://doi.org/10.1201/9781003164395-53

15. Razorenov Yu.I., Klyuev R.V., Guzueva E.R. Technogenic impact on the environment during leaching. IOP Conference Series: Earth and Environmental Science. 2022;1021:012050. https://doi.org/10.1088/1755-1315/1021/1/012050