Experimental and analytical foundations of interaction between non-linear geomechanical and physiochemical mass-gas exchange processes in coal masses

DOI: https://doi.org/10.30686/1609-9192-2025-4-157-164

Читать на русскоя языкеKaixing Wang1, T.A. Kiryaeva2
1 Liaoning Technical University, Liaoning, People’s Republic of China
2 N.A. Chinakal Institute of Mining of the Siberian branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation

Russian Mining Industry №4 / 2025 p. 157-164

Abstract: The theoretical and experimental foundations for quantitative assessment of the interaction between non-linear geomechanical and physiochemical processes are considered in stressed coal-bearing rock masses under natural mining conditions with an increased seismic risk from the earthquakes and large-scale technological blasts, as well as the influence of the temperature and the structural factors. A description is given of laboratory research into the piston mechanism of gas exchange and mass transfer processes that was performed by the Institute of Mining of the Siberian Branch of the Russian Academy of Sciences. It is shown that at a certain uniformly increasing value of the loading pressure under uniaxial compression of a coal sample, the gas flow through it begins to increase. The patterns of such an increase in the gas flows for 7 different gases were obtained as well as a hysteresis view of the changes in the intensity of gas flows through samples of different coal grades depending on the cyclically changing press load.

Keywords: geomechanics, non-linear deformation-wave processes, rock masses, mass-gas exchange processes, focal zones of catastrophic events, coal sample, pendulum waves, piston mechanism, hysteretic type of loading, gas permeability

Acknowledgments: The study has been supported by the Russian Science Foundation, Grant No. 23-17-00148, https://rscf.ru/en/project/23-17-00148/

For citation: Wang K., Kiryaeva T.A. Experimental and analytical foundations of interaction between non-linear geomechanical and physiochemical mass-gas exchange processes in coal masses. Russian Mining Industry. 2025;(4):157–164. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4-157-164


Article info

Received: 06.05.2025

Revised: 05.06.2025

Accepted: 23.06.2025


Information about the authors

Kaixing Wang – Dr. Sci. (Eng.), Professor, Liaoning Technical University, Liaoning, People’s Republic of China; https://orcid.org/0000-0001-8907-3342; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Tatiana A. Kiryaeva – Dr. Sci. (Eng.), Head of the Experimental Geomechanics Department, N.A. Chinakal Institute of Mining of the Siberian branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation; https://orcid.org/0000-0003-4159-9198; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Опарин В.Н., Киряева Т.А., Потапов В.П., Юшкин В.Ф. Новые методы и информационные технологии в экспериментальной геомеханике. Новосибирск: Изд-во СО РАН; 2021. 292 с.

2. Oparin V.N., Kiryaeva T.A., Usol’tseva O.M., Tsoi P.A., Semenov V.N. Nonlinear deformation – wave processes in various rank coal specimens loaded to failure under varied temperature. Journal of Mining Science. 2015;51(4):641–658. https://doi.org/10.1134/S1062739115040003

3. Опарин В.Н., Киряева Т.А., Качурин Н.М., Юшкин В.Ф. Взаимодействия нелинейных геомеханических и газообменных процессов при отработке месторождений углеводородного ряда. Известия Тульского государственного университета. Науки о Земле. 2023;(3):521–543. https://doi.org/10.46689/2218-5194-2023-3-1-521-543 Oparin V.N., Kiryaeva T.A., Kachurin A.N., Yushkin V.F. Interactions of nonlinear geomechanical and gas exchange processes during exhaustment hydrocarbon fields. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2023;(3):521– 543. (In Russ.) https://doi.org/10.46689/2218-5194-2023-3-1-521-543

4. Oparin V.N., Adushkin V.V., Kiryaeva T.A., Potapov V.P., Cherepov A.A., Tyukhrin V.G., Glumov A.V. Effect of pendulum waves from earthquakes on gas-dynamic behavior of coal seams in Kuzbass. Journal of Mining Science. 2018;54(1):1–12. https://doi.org/10.1134/S1062739118013269

5. Kurlenya M.V., Oparin V.N., Vostrikov V.I. Pendulum-type waves. Part I: State of the problem and measuring instrument and computer complexes. Journal of Mining Science. 1996;32(3):159–163. https://doi.org/10.1007/BF02046583

6. Kurlenya M.V., Oparin V.N., Vostrikov V.I. Pendulum-type waves. Part II: Experimental methods and main results of physical modeling. Journal of Mining Science. 1996;32(4):245–273. https://doi.org/10.1007/BF02046215

7. Kurlenya M.V., Oparin V.N., Vostrikov V.I., Arshavskii V.V., Mamadaliev N. Pendulum waves. Part III: Data of on-site observations. Journal of Mining Science. 1996;32(5):341–261. https://doi.org/10.1007/BF02046155

8. Oparin V.N. Theoretical fundamentals to describe interaction of geomechanical and physicochemical processes in coal seams. Journal of Mining Science. 2017;53(2):201–215. https://doi.org/10.1134/S1062739117022031

9. Adushkin V.V., Oparin V.N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part I. Journal of Mining Science. 2012;48(2):203–222. https://doi.org/10.1134/S1062739148020013

10. Adushkin V.V., Oparin V.N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part II. Journal of Mining Science. 2013;49(2):175–209. https://doi.org/10.1134/S1062739149020019

11. Adushkin V.V., Oparin V.N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part III. Journal of Mining Science. 2014;50(4):623–645. https://doi.org/10.1134/S1062739114040024

12. Adushkin V.V., Oparin V.N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed geomedia. Part IV. Journal of Mining Science. 2016;52(1):1–35. https://doi.org/10.1134/S106273911601009X

13. Wang K., Pan Y., Dou L., Oparin V.N. Study on recognition of pendulum-type wave propgation in block rock mass. Journal of Advanced Oxidation Technologies. 2018;21(2):95‒110.

14. Wang K.X., Aleksandrova N.I., Pan Y.S., Oparin V.N., Dou L.M., Chanyshev A.I. Effect of block medium parameters on energy dissipation. Journal of Applied Mechanics and Technical Physics. 2019;60(5):926–934. https://doi.org/10.1134/S0021894419050171

15. Oparin V.N. Pendulum waves and basics of “geomechanical thermodynamics”. Geohazard Mechanics. 2023;1(1)38‒52. https://doi.org/10.1016/j.ghm.2022.12.001

16. Oparin V.N., Karpov V.N., Timonin V.V., Konurin A.I. Evaluation of the energy efficiency of rotary percussive drilling using dimensionless energy index. Journal of Rock Mechanics and Geotechnical Engineering. 2022;14(5):1486–1500. https://doi.org/10.1016/j.jrmge.2021.12.021

17. Ивашин В.В. (ред.) Геомеханические и технические основы увеличения нефтеотдачи пластов в виброволновых технологиях. Новосибирск: Наука; 2010. 404 с.

18. Kurlenya M.V., Oparin V.N., Vostrikov V.I. Anomalously low friction in block media. Journal of Mining Science. 1997;33(1):1‒11. https://doi.org/10.1007/BF02765421

19. Kurlenya M.V., Oparin V.N., Vostrikov V.I. Geomechanical conditions for quasi-resonances in geomaterials and block media. Journal of Mining Science. 1998;34(5):379‒386. https://doi.org/10.1007/BF02550693

20. Vostrikov V.I., Oparin V.N., Chervov V.V. On some features of solid-body motion under combined vibrowave and static actions. Journal of Mining Science. 2000;36(6):523‒528. https://doi.org/10.1023/A:1016618112261

21. Kiryaeva T.A. Piston mechanism of interaction of non-linear geomechanical and physicochemical gas exchange and mass transfer processes in coal-bearing rocks. Geohazard Mechanics. 2023;1(2):110–118. https://doi.org/10.1016/j.ghm.2023.03.002

22. Майссел Л., Глэнг Р. (ред.) Технология тонких пленок (справочник). М.: Советское радио; 1977. Т. 1. 664 с.

23. Малышев Ю.Н., Трубецкой К.Н., Айруни А.Т. Фундаментально прикладные методы решения проблемы метана угольных пластов. М.: Изд-во Акад. горн. наук; 2000. 519 с.

24. Everett D.H. Manual of symbols and terminology for physicochemical quantities and units. Appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry. 1972;31(4):577–638. https://doi.org/10.1351/pac197231040577

25. Рубин А. (ред.). Химия промышленных сточных вод. М.: Химия; 1983. 360 с.

26. Опарин В.Н., Адушкин В.В., Востриков В.И., Усольцева О.М., Мулев С.Н., Юшкин В.Ф. и др. Развитие экспериментально-теоретических основ нелинейной геотомографии. Часть I: Формулировка и обоснование задачи исследований. Горный информационно-аналитический бюллетень. 2019;(1):5–25. https://doi.org/10.25018/0236-1493-2019-01-0-5-25 Oparin V.N.1, Adushkin V.V.1, Vostrikov V.I.1, Usol'tseva O.M.1, Mulev S.N.2, Yushkin V.F. et al. An experimental and theoretical framework of nonlinear geotomography. Part I: Research problem statement and justification. Mining Informational and Analytical Bulletin. 2019;(1):5–25. (In Russ.) https://doi.org/10.25018/0236-1493-2019-01-0-5-25

27. Опарин В.Н., Адушкин В.В., Востриков В.И., Юшкин В.Ф., Киряева Т.А. Развитие экспериментально-теоретических основ нелинейной геотомографии. Часть II: Динамико-кинематические характеристики волн маятникового типа в напряженных геосредах и сейсмо-эмиссионные процессы. Горный информационно-аналитический бюллетень. 2019;(11):5–26. https://doi.org/10.25018/0236-1493-2019-11-0-5-26 Oparin V.N., Adushkin V.V., Vostrikov V.I., Yushkin V.F., Kiryaeva T.A. Experimental and theoretical framework of nonlinear geotomography. Part II: Dynamic and kinematic characteristics of pendulum waves in high-stress geomedia and processes of seismic emission. Mining Informational and Analytical Bulletin. 2019;(11):5–26. (In Russ.) https://doi.org/10.25018/0236-1493-2019-11-0-5-26

28. Опарин В.Н., Адушкин В.В., Востриков В.И., Юшкин В.Ф., Киряева Т.А. Развитие экспериментально-теоретических основ нелинейной геотомографии. Часть III: Перспективные системы контроля деформационно-волновых процессов в подземных и наземных условиях ведения горных работ. Горный информационно-аналитический бюллетень. 2019;(12):5–29. https://doi.org/10.25018/0236-1493-2019-12-05-29 Oparin V.N., Adushkin V.V., Vostrikov V.I., Yushkin V.F., Kiryaeva T.A. Experimental and theoretical framework of nonlinear tomography. Part III: Promising systems to control deformation and wave processes in surface and underground mining. Mining Informational and Analytical Bulletin. 2019;(12):5–29. (In Russ.) https://doi.org/10.25018/0236-1493-2019-12-05-29

29. Мельников Н.Н. (ред.) Геомеханические поля и процессы: экспериментально-аналитические исследования формирования и развития очаговых зон катастрофических событий в горнотехнических и природных системах. Новосибирск: Изд-во Сибирского отд-ния Российской акад. наук, 2018. Т. 1. 549 с.

30. Мельников Н.Н. (ред.) Геомеханические поля и процессы: экспериментально-аналитические исследования формирования и развития очаговых зон катастрофических событий в горнотехнических и природных системах. Новосибирск: Изд-во Сибирского отд-ния Российской акад. наук, 2019. Т. 2. 545 с.

31. Kiryaeva T.A. Methods of energy analysis and prediction of gas-dynamics in coal-and-methane coal seams in Kuzbass. Riga: LAPLAMBERT Academic Publishing; 2019. 332 р.

32. Oparin V.N., Kiryaeva T.A., Gavrilov V.Yu., Shutilov R.A., Kovchavtsev A.P., Tanaino A.S. et al. Interaction of geomechanical and physicochemical processes in Kuzbass coal. Journal of Mining Science. 2014;50(2):191–214. https://doi.org/10.1134/S106273911402001X

33. Киряева Т.А., Опарин В.Н., Яценко Д.А. Микро-наноструктурный анализ особенностей в строении угольного вещества в зависимости от стадий его метаморфизма. Горный информационно-аналитический бюллетень. 2021;(5):5–23. https://doi.org/10.25018/0236_1493_2021_5_0_5 Kiryaeva T.A., Oparin V.N., Yatsenko D.A. Micro and nano structure analysis of coal substance versus coal ranks. Mining Informational and Analytical Bulletin. 2021;(5):5–23. (In Russ.) https://doi.org/10.25018/0236_1493_2021_5_0_5

34. Oparin V.N., Kiryaeva T.A. Operator of connection between the Langmuir equation and oparin’s kinematic equation for pendulum-type waves. Part I. In: Solovev D.B., Savaley V.V., Bekker A.T., Petukhov V.I. (eds) Proceeding of the International Science and Technology Conference “FarEastСon 2021”. Smart Innovation, Systems and Technologies, vol 275. Singapore: Springer; 2022, pp. 1–13. https://doi.org/10.1007/978-981-16-8829-4_1

35. Oparin V.N., Kiryaeva T.A. Operator of connection between the Langmuir equation and oparin’s kinematic equation for pendulum-type waves. Part II. In: Solovev D.B., Savaley V.V., Bekker A.T., Petukhov V.I. (eds) Proceeding of the International Science and Technology Conference “FarEastСon 2021”. Smart Innovation, Systems and Technologies, vol 275. Singapore: Springer; 2022, pp. 15–29. https://doi.org/10.1007/978-981-16-8829-4_2

36. Oparin V.N., Kiryaeva T.A. Operator of connection between the Langmuir equation and oparin’s kinematic equation for pendulum-type waves. Part III. In: Solovev D.B., Savaley V.V., Bekker A.T., Petukhov V.I. (eds) Proceeding of the International Science and Technology Conference “FarEastСon 2021”. Smart Innovation, Systems and Technologies, vol 275. Singapore: Springer; 2022, pp. 31–43. https://doi.org/10.1007/978-981-16-8829-4_3

37. Опарин В.Н., Качурин Н.М., Киряева Т.А., Потапов В.П. О проблеме разработки экспериментально-аналитических основ теории взаимодействия геомеханических и физико-химических газообменных процессов при отработке угольных месторождений. Науки о Земле. 2023;(3):503–521. https://doi.org/10.46689/2218-5194-2023-3-1-503-521 Oparin V.N., Kachurin N.M., Kiryaeva T.A., Potapov V.P. On the problem of developing the experimental and analytical foundations of the theory of interaction of geomechanical and physical and chemical processes during the mining of coal deposits. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2023;(3):503–521. (In Russ.) https://doi.org/10.46689/2218-5194-2023-3-1-503-521