Numerical simulation of the digging process with an excavator bucket using the discrete element method

DOI: https://doi.org/10.30686/1609-9192-2025-4-144-150

Читать на русскоя языкеV.A. Plaschinsky, E.I. Sheshukova, A.E. Salimov, D.A. Shibanov, S.L. Ivanov
Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation

Russian Mining Industry №4 / 2025 p. 144-150

Abstract: The paper examines the digging process with an excavator bucket. Numerical simulations of the excavation process with variable chip size, particle size and bulk density of the rocks were carried out in order to establish these parameters for the digging force and the power. As the result of numerical experiments, the adequacy and accuracy of the numerical model have been confirmed using the criterion of compliance of the values of the digging force and the volume of the scooped rock with the physical model. The functional dependencies have been determined for calculating the values of the digging force and the power depending on these parameters. It has been established that, based on the energy approach, it is possible to change the time between overhauls and the type of MRO operations for a mining machine depending on the intensity of the resource utilization. Numerical modeling of the work processes taking place in these machines is an effective tool that makes it possible to accurately assess the contribution of various factors to the intensity of their resource utilization.

Keywords: mine excavator, DEM, numerical modeling, material interaction parameters, loose medium

For citation: Plaschinsky V.A., Sheshukova E.I., Salimov A.E., Shibanov D.A., Ivanov S.L. Numerical simulation of the digging process with an excavator bucket using the discrete element method. Russian Mining Industry. 2025;(4):144–150. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4-144-150


Article info

Received: 17.05.2025

Revised: 18.06.2025

Accepted: 20.06.2025


Information about the authors

Vyacheslav A. Plaschinsky – Cand. Sci. (Eng.), Assistant Lecturer, Department of Mechanical Engineering, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0003-0326-4514; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ekaterina I. Sheshukova – Postgraduate Student, Department of Mechanical Engineering, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abbos Erkin Ugli Salimov – Postgraduate Student, Department of Mechanical Engineering, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation

Daniil A. Shibanov – Cand. Sci. (Eng.), Ass. Professor, Department of Mechanical Engineering, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-6203-0219

Sergey L. Ivanov – Dr. Sci. (Eng.), Professor, Department of Mechanical Engineering, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russian Federation; https://orcid.org/0000-0002-7014-2464; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


Authors’ contribution

V.A. Plaschinsky – creation of the digital model, execution of the numerical experiment.

E.I. Sheshukova – designing of the calculation algorithm, execution of the physical experiment, execution of the numerical experiment.

A.E. Salimov – processing of the experimental data.

D.A. Shibanov – analysis of the initial and newly obtained data.

S.L. Ivanov – general methodological guidance, reviewing, writing the text of the article, revision.


References

1. Мякотных А.А., Иванова П.В., Иванов С.Л. Критерии и технологические требования создания мостовой платформы добычи торфяного сырья для климатически нейтральной геотехнологии. Горная промышленность. 2024;(4):116–120. https://doi.org/10.30686/1609-9192-2024-4-116-120 Myakotnykh A.A., Ivanova P.V., Ivanov S.L. Criteria and technological requirements for creation of a bridge platform to extract peat raw materials for climate-neutral geotechnology. Russian Mining Industry. 2024;(4):116–120. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-116-120

2. Гаращенко Ж.М., Теремецкая В.А., Габов В.В. Отработка угольных целиков унифицированными выемочными модулями локальными забоями. Горная промышленность. 2024;(5S):151–157. https://doi.org/10.30686/1609-9192-2024-5S-151-157 Garashchenko Zh.M., Teremetskaya V.A., Gabov V.V. Mining of coal pillars using unified excavation modules with local faces. Russian Mining Industry. 2024;(5S):151–157. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-151-157

3. Назарычев А.Н., Дяченок Г.В., Сычев Ю.А. Исследование надежности тягового электропривода карьерных самосвалов на основе анализа отказов его функциональных узлов. Записки Горного института. 2023;261:363–373. Режим доступа: https://pmi.spmi.ru/pmi/article/view/16189 (дата обращения: 29.03.2025). Nazarychev A.N., Dyachenok G.V., Sychev Y.A. A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts. Journal of Mining Institute. 2023;261:363–373. Available at: https://pmi.spmi.ru/pmi/article/view/16189 (accessed: 29.03.2025).

4. Ilic D., Katterfeld A. Simulation of Transfer Chutes. In: McGlinchey D. (ens) Simulations in Bulk Solids Handling: Applications of DEM and Other Methods. Wiley‐VCH GmbH; 2023. Chapter 2, pp. 41–77. https://doi.org/10.1002/9783527835935.ch2

5. Шестаков В.С., Брозовский С.Ю., Давыдов П. В. Исследование нагруженности стрелы экскаватора-драглайна. Горный информационно-аналитический бюллетень. 2024;(1-1):167–178. https://doi.org/10.25018/0236_1493_2024_011_0_167 Shestakov V. S., Brozovskiy S. Yu., Davydov P. V. Excavator boom load study dragline. Mining Informational and Analytical Bulletin. 2024;(1-1):167–178. (In Russ.) https://doi.org/10.25018/0236_1493_2024_011_0_167

6. Комиссаров А.П., Маслеников О.А., Набиуллин Р.Ш., Хорошавин С.А. Оценка степени противодействия двигателей приводов главных механизмов карьерного экскаватора. Горное оборудование и электромеханика. 2022;(6):10–16. https://doi.org/10.26730/1816-4528-2022-6-10-16 Komissarov A.P., Maslennikov O.A., Nabiullin R.S., Khoroshavin S.A. Assessment of the degree of counteraction of the drive motors of the main mechanisms of the quarry excavator. Mining Equipment and Electromechanics. 2022;(6):10–16. (In Russ.) https://doi.org/10.26730/1816-4528-2022-6-10-16

7. Корогодин А.С., Иванов С.Л. Оценка технического состояния опорных подшипников скольжения барабанной мельницы при эксплуатации в составе арктического комплекса горного оборудования. Горная промышленность. 2024;(6):144–151. https://doi.org/10.30686/1609-9192-2024-6-144-151 Korogodin A.S., Ivanov S.L. Assessment of the technical condition of drum mill supporting sliding bearings during operation as part of an arctic mining equipment complex. Russian Mining Industry. 2024;(6):144–151. (In Russ.) https://doi.org/10.30686/1609-9192-2024-6-144-151

8. Ботян Е.Ю., Лавренко С.А., Пушкарев А.Е. Методика уточненного расчета межремонтного периода элементов подвески карьерных автосамосвалов посредством учета горнотехнических условий их эксплуатации. Горная промышленность. 2024;(1):71–76. https://doi.org/10.30686/1609-9192-2024-1-71-76 Botyan E.Y., Lavrenko S.A., Pushkarev A.E. Methodology for refined calculation of mean time to repair of mining dump truck suspension elements with account of mining and technical conditions of their operation. Russian Mining Industry. 2024;(1):71–76. (In Russ.) https://doi.org/10.30686/1609-9192-2024-1-71-76

9. Громыка Д.С., Гоголинский К.В. Рекомендации по внедрению методики оценки текущего состояния коронок зубьев ковшей экскаваторов в систему технического обслуживания и ремонта. Горный информационно-аналитический бюллетень. 2023;(8):94–111. https://doi.org/10.25018/0236_1493_2023_8_0_94 Gromyka D.S., Gogolinskiy K.V. Introduction of evaluation procedure of excavator bucket teeth into maintenance and repair: Promptse. Mining Informational and Analytical Bulletin. 2023;(8):94–111. https://doi.org/10.25018/0236_1493_2023_8_0_94

10. Комиссаров А.П., Шестаков В.С., Набиуллин Р.Ш. Разработка цифровой модели рабочего процесса гидравлического экскаватора. В кн.: Технологическое оборудование для горной и нефтегазовой промышленности: сб. тр. 18-й междунар. науч.-техн. конф. «Чтения памяти В.Р. Кубачека», провед. в рамках Уральской горнопромышленной декады, г. Екатеринбург, 2–3 апр. 2020 г. Екатеринбург: УГГУ; 2020. С. 242–247.

11. Алиева Л., Жуков И.А. Повышение эффективности ударно-поворотного бурения горных пород высокой крепости совершенствованием структуры породоразрушающего безлезвийного инструмента. Устойчивое развитие горных территорий. 2024;16(4):1681–1694. https://doi.org/10.21177/1998-4502-2024-16-4-1681-1694 Alieva L., Zhukov I.A. Upgrading rotary-percussion drilling of high - strength rocks by improving the structure of a rockcrushing blade-free tool. Sustainable Development of Mountain Territories. 2024;16(4):1681–1694. (In Russ.) https://doi.org/10.21177/1998-4502-2024-16-4-1681-1694

12. Pervuhin D.A., Trushnikov V.E., Abramkin S.E., Hloponina V.S., Talanov N.A. Development of methods to improve stability of underground structures operation. International Journal of Engineering. 2025;38(2):472–487. https://doi.org/10.5829/ije.2025.38.02b.20

13. Muratbakeev E., Kozhubaev Yu., Yiming Y., Umar S. Symmetrical modeling of physical properties of flexible structure of silicone materials for control of pneumatic soft actuators. Symmetry. 2024;16(6):750. https://doi.org/10.3390/sym16060750

14. Kozhubaev Yu., Yang R. Simulation of dynamic path planning of symmetrical trajectory of mobile robots based on improved A* and artificial potential field fusion for natural resource exploration. Symmetry. 2024;16(7):801. https://doi.org/10.3390/sym16070801

15. Scheffler O.C., Coetzee C.J. Discrete element modelling of a bulk cohesive material discharging from a conveyor belt onto an impact plate. Minerals. 2023;13(12):1501. https://doi.org/10.3390/min13121501

16. Cleary P.W. Effect of rock shape representation in DEM on flow and energy utilisation in a pilot SAG mill. Computational Particle Mechanics. 2019;6(3):461–477. https://doi.org/10.1007/s40571-019-00226-3

17. Kolahi S., Chegeni M.J., Seifpanahi-Shabani K. Investigation of the effect of industrial ball mill liner type on their comminution mechanism using DEM. International Journal of Mining and Geo-Engineering. 2021;55(2):97–107. https://doi.org/10.22059/IJMGE.2020.289423.594826

18. Жуковский Ю.Л., Королев Н.А., Малькова Я.М. Мониторинг состояния измельчения в барабанных мельницах по результирующему моменту на валу. Записки Горного института. 2022;256:686–700. https://doi.org/10.31897/PMI.2022.91 Zhukovskiy Y.L., Korolev N.A., Malkova Y.M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Journal of Mining Institute. 2022;256:686–700. https://doi.org/10.31897/PMI.2022.91

19. Yin Z., Ma D., Li T. Effect of grinding media grading on liner wear and load behavior in a ball mill by using rocky DEM. Lubricants. 2024;12(10):340. https://doi.org/10.3390/lubricants12100340

20. Beloglazov I., Morenov V., Leusheva E., Gudmestad O.T. Modeling of heavy-oil flow with regard to their rheological properties. Energies. 2021;14(2):359. https://doi.org/10.3390/en14020359

21. Coetzee C.J., Scheffler O.C. Review: The calibration of DEM parameters for the bulk modelling of cohesive materials. Processes. 2023;11(1):5. https://doi.org/10.3390/pr11010005

22. Шешукова Е.И., Плащинский В.А., Салимов А.Э., Шибанов Д.А., Иванов С.Л. Моделирование процесса копания ковшом экскаватора породы при заданной величине стружки. Горный информационно-аналитический бюллетень. 2024;(S21):3–12. Sheshukova E.I., Plaschinsky V.A., Salimov A.E., Shibanov D.A., Ivanov S.L. Simulation of the process of digging with an excavator bucket of rock at a given chip size. Mining Informational and Analytical Bulletin. 2024;(S21):3–12.

23. Шибаева Д.Н., Терещенко С.В., Асанович Д.А., Шумилов П.А. К вопросу о необходимости классификации горной массы, направляемой на сухую магнитную сепарацию. Записки Горного института. 2022;256:603–612. https://doi.org/10.31897/PMI.2022.79 Shibaeva D.N., Tereshchenko S.V., Asanovich D.A., Shumilov P.A. On the need to classify rock mass fed to dry magnetic separation. Journal of Mining Institute. 2022;256:603–612. https://doi.org/10.31897/PMI.2022.79

24. Северцев Н.А., Дарьина А.Н. Применение критериев подобия при ресурсной отработке сложных технических систем и изделий. Надежность и качество сложных систем. 2020;(4):5–14. https://doi.org/10.21685/2307-4205-2020-4-1 Severtsev N.A., Daryina A.N. Application of similarity criteria for resource development of complex technical systems and products. Reliability & Quality of Complex Systems. 2020;(4):5–14. (In Russ.) https://doi.org/10.21685/2307-4205-2020-4-1

25. Дремин А.В., Великанов В.С. К вопросу о гранулометрическом составе взорванных скальных пород. Горная промышленность. 2023;(4):73–78. https://doi.org/10.30686/1609-9192-2023-4-73-78 Dremin A.V., Velikanov V.S. Regarding the particle-size composition of blasted rocks. Russian Mining Industry. 2023;(4):73–78. https://doi.org/10.30686/1609-9192-2023-4-73-78

26. Великанов В.С., Дремин А.В., Чернухин С.А., Ломовцева Н.В. Технологии нейронных сетей в интеллектуальном анализе данных гранулометрического состава взорванных пород. Горная промышленность. 2024;(4):90–94. https://doi.org/10.30686/1609-9192-2024-4-90-94 Velikanov V.S., Dremin A.V., Chernukhin S.A., Lomovtseva N.V. Neural network technologies in mining data on particle size distribution of muck pile rocks. Russian Mining Industry. 2024;(4):90–94. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-90-94

27. Wang X., Yi J., Zhou Z., Yang C. Optimal speed control for a semi-autogenous mill based on discrete element method. Processes. 2020;8(2):233. https://doi.org/10.3390/pr8020233

28. Lvov V., Chitalov L. Semi-Autogenous Wet Grinding Modeling with CFD-DEM. Minerals. 2021;11(5):485. https://doi.org/10.3390/min11050485

29. Guo J., Roberts A.W., Jones M., Robinson P. Bulk solids flow at the hopper feeder interface with special plane flow configuration. Powder Technology. 2022;403:117372. https://doi.org/10.1016/j.powtec.2022.117372

30. Klishin S., Mikenina O. DEM generation of particle packs in the Aristotelian mechanics. AIP Conference Proceedings. 2021;2448:020011. https://doi.org/10.1063/5.0073421

31. Zhurkina D.S., Klishin S.V., Lavrikov S.V., Leonov M.G. D DEM-based modeling of shear localization and transition of geomedium to unstable deformation. Journal of Mining Science. 2022;58(3):357–365. https://doi.org/10.1134/S1062739122030024

32. Chimwani N., Bwalya M.M. Exploring the end-liner forces using DEM software. Minerals. 2020;10(12):1047. https://doi.org/10.3390/min10121047

33. Carr M.J., Roessler T., Robinson P.W., Otto H., Richter C., Katterfeld A., Wheeler C.A. Calibration procedure of Discrete Element Method (DEM) parameters for wet and sticky bulk materials. Powder Technology. 2023;429:118919. https://doi.org/10.1016/j.powtec.2023.118919

34. Coetzee C., Scheffler O.C. Comparing particle shape representations and contact models for DEM simulation of bulk cohesive behaviour. Computers and Geotechnics. 2023;159:105449. https://doi.org/10.1016/j.compgeo.2023.105449

35. Шешукова Е.И., Шибанов Д.А., Иванов С.Л., Шишкин П.В. Оценка нагрузок приводов рабочего оборудования карьерного экскаватора (часть 2). Горная промышленность. 2024;(4):108–114. https://doi.org/10.30686/1609-9192-2024-4-108-114 Sheshukova E.I., Shibanov D.A., Ivanov S.L., Shishkin P.V. Assessment of loads at the working attachment of a mine shovel (Part 2). Russian Mining Industry. 2024;(4):108–114. (In Russ.) https://doi.org/10.30686/1609-9192-2024-4-108-114