Economic and mathematical modeling of the mining industry in the Republic of Sakha (Yakutia): assessment of the resource utilization efficiency

DOI: https://doi.org/10.30686/1609-9192-2025-4-134-139

Читать на русскоя языкеV.V. Nikiforova1, E.E. Grigorieva1, M.P. Solomonov2
1 Research Institute of regional Economics of the North, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation
2 Federal Research Center of the Yakutsk Research Center of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation

Russian Mining Industry №4 / 2025 p. 134-139

Abstract: This article presents an economic and mathematical modeling of the impact of the mining industry on the social and economic development of municipal districts in the Republic of Sakha (Yakutia). Five key mining districts were evaluated, i.e, the Aldansky, Lensky, Mirninsky, Neryungrinsky, and Oymyakonsky districts, using the CES (Constant Elasticity of Substitution) production function to analyze the substitution elasticity between capital and labor. These districts account for over 90% of the region’s mineral mining. The study utilizes the official municipal statistics from 2000–2023, including data on the off-loaded volumes of locally produced goods, the value of fixed assets, and the average annual number of employees at these companies. The results revealed the most balanced resource utilization in the Aldansky and Lensky districts, while the low model accuracy for Neryungrinsky district was attributed to coal production volatility and data scarcity. At the macro level, the model demonstrated near-perfect alignment for the Republic of Sakha (Yakutia) as a whole, confirming its applicability for strategic planning. The developed model serves as a tool for optimizing investments, designing sustainable development strategies, and minimizing risks in the mining territories. Study limitations stem from insufficient municipal statistics, that require integration of social and environmental parameters in the future. Further research needs a more differentiated approach to local management to ensure balanced growth.

Keywords: mining industry, Republic of Sakha (Yakutia), CES production function, elasticity of substitution, municipal districts, resource efficiency

Acknowledgments: The article was prepared within the framework of the state assignment project of the Ministry of Education and Science of the Russian Federation entitled “Advanced methods of mathematical modeling and their applications” (No. FSRG-2023-0025).

For citation: Nikiforova V.V., Grigorieva E.E., Solomonov M.P. Economic and mathematical modeling of the mining industry in the Republic of Sakha (Yakutia): assessment of the resource utilization efficiency. Russian Mining Industry. 2025;(4):134–139. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4-134-139


Article info

Received: 03.05.2025

Revised: 10.06.2025

Accepted: 23.06.2025


Information about the authors

Valentina V. Nikiforova – Cand. Sci. (Econ.), Leading Researcher, Research Institute of regional Economics of the North, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. Elena E. Grigorieva – Cand. Sci. (Econ.), Associate Professor, Leading Researcher, Research Institute of regional Economics of the North, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Michael P. Solomonov – Cand. Sci. (Econ.), Associate Professor, Leading Researcher of the Department of Regional Economic and Social Research, Federal Research Center of the Yakutsk Research Center of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Дилигенская А.Н. Математическое моделирование и анализ процессов управления производственными системами. Вестник Самарского государственного технического университета. Серия «Технические науки». 2010;18(7):14–18. Режим доступа: https://journals.eco-vector.com/1991-8542/article/view/19491 (дата обращения: 11.04.2025). Diligenskaya A.N. Mathematical modeling and analysis of the control processes of production systems. Vestnik of Samara State Technical University. Technical Sciences Series. 2010;18(7):14–18. (In Russ.) Available at: https://journals.eco-vector.com/1991-8542/article/view/19491 (accessed: 11.04.2025).

2. Муллахмедова С.С., Шахпазова Р.Д., Саралинова Д.С., Омаров З.З. Модель экономического роста Р. Солоу: генезис теории и методологии. Региональные проблемы преобразования экономики. 2019;(12):7–15. https://doi.org/10.26726/1812-7096-2019-12-7-15 Mullahmedova S.S., Shakhpazova R.D., Saralinova Ja.S., Omarov Z.Z. Solow's economic growth model: Genesis of theory and methodology. Regionalnye Problemy Preobrazovaniya Ekonomiki. 2019;(12):7–15. (In Russ.) https://doi.org/10.26726/1812-7096-2019-12-7-15

3. Жуков Р.А., Козлова Н.О., Хлынин Э.В., Городничев С.В. Экономико-математическое моделирование состояния и перспектив добычи полезных ископаемых в регионах ЦФО. Известия Тульского государственного университета. Науки о Земле. 2022;(3):354–368. Zhukov R.A., Kozlova N.O., Khlynin E.V., Gorodnichev S.V. Economic andmathematical modeling of the condition and prospects of extraction of minerals in the central federal district regions. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2022;(3):354–368. (In Russ.)

4. Грабовец О.В., Сидорчукова Е.В. Корреляционно-регрессионный анализ как метод обоснования управленческих решений. Экономика и социум. 2015;(6-2):633–638. Grabovets O.V., Sidorova A.V. Correlation and regression analysis as a method of substantiating management decisions. Economy and Society. 2015;(6-2):633–638. (In Russ.)

5. Скуфьина Т.П., Баранов С.В. Математико-статистическое моделирование динамики производства ВРП регионов Севера и Арктики: в поисках лучшей модели. Вопросы статистики. 2017;(7):52–64. Режим доступа: https://voprstat.elpub.ru/jour/article/view/538 (дата обращения: 11.04.2025). Skufina T.P., Baranov S.V. Mathematical and statistical modeling of the grp production dynamics in the regions of the north and the arctic: in search of a better model. Voprosy Statistiki. 2017;(7):52–64. (In Russ.) Available at: https://voprstat.elpub. ru/jour/article/view/5381 (accessed: 11.04.2025).

6. McFadden D. Constant elasticity of substitution production functions. The Review of Economic Studies. 1963;30(2):73–83. https://doi.org/10.2307/2295804

7. Acemoglu D., Restrepo P. Tasks, automation, and the rise in US wage inequality. Econometrica. 2022;90(5):1973–2016. https://doi.org/10.3982/ECTA19815

8. Hémous D., Olsen M. The rise of the machines: Automation, horizontal innovation, and income inequality. American Economic Journal: Macroeconomics. 2022;14(1):179–223. https://doi.org/10.1257/mac.20160164

9. Stiefenhofer P. The future of work and capital: analyzing AGI in a CES production model. Applied Mathematical Sciences. 2025;19(2):47–58. https://doi.org/10.12988/ams.2025.919196

10. Baqaee D.R., Farhi E. Networks, barriers, and trade. Econometrica. 2024;92(2):505–541. https://doi.org/10.3982/ECTA17513

11. Мартынова С.И., Дмитриев А.П. Производственный процесс как объект математического моделирования. В кн.: Литовский С.М. (ред.) Тезисы докладов 36-й научно-технической конференции преподавателей и студентов университета, г. Витебск, 22–23 апр. 2023 г. Витебск: Витебский государственный технологический университет; 2003. С. 23–24.

12. Кретова Ю.И., Цирульниченко Л.А. Математическое моделирование как эффективный инструмент прогнозирования и управления производственными процессами. Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2018;6(1):5–13. https://doi.org/10.14529/food180101 Kretova Yu.I., Tcirulnichenko L.A. Mathematical modeling as an effective instrument for production processes predication and management. Bulletin of South Ural State University, Series Food and Biotechnology. 2018, 2018;6(1):5–13. (In Russ.) https://doi.org/10.14529/food180101

13. Биккулов И.М., Самиков А.А., Герасимов И.А. Применение математического моделирования для оптимизации производственных процессов. В кн.: Боев Е.В., Кадыров Р.Р., Андриянова Н.В., Сулейманов Д.Ф., Горбунова М.А., Овсянникова И.В. (ред.) Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность – 2020: сб. материалов 3-й Всерос. науч.-практ. конф., г. Стерлитамак, 20 окт. 2020 г. Уфа: Нефтегазовое дело; 2020. С. 585–590.

14. Лемешко Е.Ю. Применение математического моделирования для оптимизации производственных процессов. Вестник науки. 2024;1(4):452–456. Режим доступа: https://www.вестник-науки.рф/article/13733 (дата обращения: 11.04.2025). Lemeshko E.Yu. Application of mathematical modeling to optimize production processes. Science Bulletin. 2024;1(4):452– 456. (In Russ.) Available at: https://www.вестник-науки.рф/article/13733 (accessed: 11.04.2025).

15. Komissarov P.V. Comprehensive assessment of the base of mathematical modelling of production business processes. European Scientific e-Journal. 2021;(8):7–23. https://doi.org/10.47451/man2021-09-001