Modeling of tectonic faults using finite stiffness links with integration in CAE Fidesys
Yu.Yu. Golovchenko1, A.E. Rumyantsev1, V.V. Lalin2, 3, M.A. Sonnov4
1 Gipronickel Institute, St. Petersburg, Russian Federation
2 Peter the Great St. Petersburg Politechnik University, Saint Petersburg, Russian Federation
3 Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
4 Fidesis LLC, Moscow, Russian Federation
Russian Mining Industry №4 / 2025 p. 78-84
Abstract: This paper presents an original methodology for modeling tectonic faults in rock masses using finite stiffness links, developed within the framework of the finite element method. Unlike traditional approaches that require explicit construction of thefault geometry and its integration with theother structural elements of the model, the proposed method allows tectonic faults to be defined implicitly. This is achieved through the introduction of special spring elements between themesh nodes, which have adjustable stiffness in thespecified directions. This approach to representing weakened zones eliminates the need to modify the base geometry of the model, simplifies its topology, and improves the stability of numerical calculations. The methodology is implemented as a standalone Python-based module and is used in conjunction with the domestic CAE Fidesys software package. The module automatically generates a list of finite stiffness links based on the input coordinates of thefaults, assignsthe stiffness parameters, and integrates them into the computational model without modifying the graphical interface of the main program. The developed tool has been tested on a number of geomechanical problems and it has beensuccessfully verified through comparisons with thetheoretical and empirical results. In addition, the article provides recommendations for selecting thespring element parameters based on the geological structure of the rock mass, the degree of tectonic fracturing, and the specific features of the engineering problem. The developed methodology can be efficiently applied in designing of mining excavations, engineering assessment of rock stability in seismically active regions, and geomechanical support of miningprojects. Its use is particularly relevant in conditions of complex geological structures and multiple intersecting faults, where classical modeling methods face significant computational and methodological limitations.
Keywords: tectonic faults, numerical modeling, finite element method, finite stiffness links, CAE Fidesys, weakened zones, geomechanics, spring elements, engineering geology
For citation: Golovchenko Yu.Yu., RumyantsevA.E., Lalin V.V., Sonnov M.A. Modeling of tectonic faults using finite stiffness links with integration in CAE Fidesys. Russian Mining Industry. 2025;(4):78–84. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4-78-84
Article info
Received: 09.05.2025
Revised: 18.06.2025
Accepted: 21.06.2025
Information about the authors
Yuriy Yu. Golovchenko – Research Associate, Laboratory of Geotechnical Engineering, Gipronickel Institute, St. Petersburg, Russian Federation; ORCID: https://orcid.org/0000-0003-2980-2173; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Alexandr E. Rumyantsev – Cand. Sci. (Eng.), Head of the Geotechnical Laboratory, Gipronickel Institute, St. Petersburg, Russian Federation; https://orcid.org/0000-0002-2204-961X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Vladimir V. Lalin – Dr. Sci. (Eng.), Professor, Peter the Great St. Petersburg Politechnik University, Saint Petersburg, Russian Federation; Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation; https://orcid.org/0000-0003-3850-424X
Maksim A. Sonnov – Full Member of the Academy of Mining Sciences, Deputy General Director for Sales, Fidesis LLC, Moscow, Russian Federation; https://orcid.org/0009-0004-3932-5571; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Протосеня А.Г., Беляков Н.А., Буслова М.А. Моделирование напряженно-деформированного состояния блочного горного массива рудных месторождений при отработке системами разработки с обрушением. Записки Горного института. 2023;262:619–627. Режим доступа: https://pmi.spmi.ru/pmi/article/view/15942(дата обращения: 25.03.2025). Protosenya A.G., Belyakov N.A., Bouslova M.A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023;262:619–627. Available at: https://pmi.spmi.ru/pmi/article/view/15942(accessed: 25.03.2025).
2. Мороз Н.Е., Сидоров Д.В., СонновМ.А. Комплексное геомеханическое моделирование разработки жильных месторождений блочного строения. Горная промышленность. 2023;(6):71–74. https://doi.org/10.30686/1609-9192-2023-6-71-74 Moroz N.E., Sidorov D.V., Sonnov M.A. Complex geomechanical modeling of mining vein deposits of block structure. Russian Mining Industry. 2023;(6):71–74. (In Russ.) https://doi.org/10.30686/1609-9192-2023-6-71-74
3. Гзовский М.В. Основы тектонофизики. М.: Недра; 1975. 536 с. Режим доступа: https://www.geokniga.org/books/8568 (дата обращения: 25.03.2025)
4. Treffeisen T., Henk A. Representation of faults in reservoir-scale geomechanical finite element models – A comparison of different modelling approaches. Journal of Structural Geology. 2020;131:103931. https://doi.org/10.1016/j.jsg.2019.103931
5. Markou N., Papanastasiou P. 3D geomechanical finite element analysis for a Deepwater faulted reservoir in the eastern Mediterranean. Rock Mechanics and Rock Engineering. 2025;58(1):65–86. https://doi.org/10.1007/s00603-024-03806-9
6. Господариков А.П., Зацепин М.А. Математическое моделирование нелинейных краевых задач геомеханики. Горный журнал. 2019;(12):16–20.https://doi.org/10.17580/gzh.2019.12.03 Gospodarikov A.P., Zatsepin M.A. Mathematical modeling of boundary problems in geomechanics. Gornyi Zhurnal. 2019;(12):16–20. (In Russ.) https://doi.org/10.17580/gzh.2019.12.03
7. Atif M., RaghukanthS.T.G., Manam S.R. Finite-fault simulations for rotations and strains in the near-fault subjected to layered reduced micropolar half-space. Journal of Seismology. 2023;27(3):537–572.https://doi.org/10.1007/s10950-023-10140-0
8. Гайнанов Ш.Х., Аптуков В.Н., Середин В.В. Математическое моделирование трещиноватости пород в пределах локальных структур. Известия Томского политехнического университета. Инжиниринг георесурсов. 2024;335(1):184– 193. https://doi.org/10.18799/24131830/2024/1/4541 GaynanovSh.Kh.1, AptukovV.N.1, SeredinV.V. Mathematical modeling of rock sfracture with in local structures. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2024;335(1):184–193. (In Russ.) https://doi.org/10.18799/24131830/2024/1/4541
9. Khalifeh-Soltani A., Alavi S.A., Ghassemi M.R., Ganjiani M., Derakhshani R. Elucidating fault-related fold mechanics: a 2D finite element analysis of bending, slip, and buckling mechanisms. Frontiers in Earth Science. 2023;11:1295898. https://doi.org/10.3389/feart.2023.1295898
10. Augarde C.E., Lee S.J., Loukidis D. Numerical modelling of large deformation problems in geotechnical engineering: A stateof-the-art review. Soils and Foundations. 2021;61(6):1718–1735. https://doi.org/10.1016/j.sandf.2021.08.007
11. Peikert J., Hampel A., Bagge M. Three-dimensional finite-element modeling of Coulomb stress changes on normal and thrust faults caused by pore fluid pressure changes and postseismic viscoelastic relaxation. Geosphere. 2024; 20 (1):105–128. https://doi.org/10.1130/GES02672.1
12. Hutka G.A., Cacace M., Hofmann H., Zang A., Wang L., Ji Y. Numerical investigation of the effect of fluid pressurization rate on laboratory-scale injection-induced fault slip. Scientific Reports. 2023;13:4437. https://doi.org/10.1038/s41598-023-30866-8
13. Novikov A., Behbahani S.S., Voskov D., Hajibeygi H., Jansen J.-D. Benchmarking numerical simulation of induced fault slip with semi-analytical solutions.Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2024;10:182. https://doi.org/10.1007/s40948-024-00896-1
14. Мещанинов С.К. Методы моделирования и управления надежностью функционирования горных выработок. Днепропетровск: Национальный горный университет; 2011. 360 с.Режим доступа: https://www.geokniga.org/books/21426 (дата обращения: 25.03.2025).
15. Захаров В.Н., Филиппов Ю.А., Аверин А.П., Харченко А.В. Геопространственное моделирование рельефа местности и тектонической нарушенности массива горных пород.Горный информационно-аналитический бюллетень. 2010;(S5):9–13. Zakharov V.N., Filippov Yu. A., Averin A.P., Kharchenko A.V. Geospatial modeling of topographic features and tectonic faults of the rock mass. Mining Informational and Analytical Bulletin. 2010; (S5):9–13. (InRuss.)
16. Мирошникова Л.К., Мезенцев А.Ю., Семенякина Н.В., Котельникова Е.А. Геодинамически активные структуры западного фланга Талнахскойтектоно-магматической системы. Горная промышленность. 2020;(3):105–112. https://doi.org/10.30686/1609-9192-2020-3-105-112 Miroshnikova L.K., Mezentsev A.Yu., Semenyakina N.V., Kotelnikova E.M. Geodynamically active structures of western flank of Tanakh orogenic system. Russian MiningIndustry. 2020;(3):105–112. (InRuss.) https://doi.org/10.30686/1609-9192-2020-3-105-112
17. Клыков П.И., Зверев Г.В., Наговицин А.В., Петренко И.А., Кудряшова Д.А., Мошкин Н.А. Построение 1D геомеханической модели для сложных горно-геологических условий на примере месторождения Южного Каспия. Строительство нефтяных и газовых скважин на суше и на море. 2024;(6):12–18. Klykov P.I., Zverev G.V., Nagovitsin A.V., Petrenko I.A., Kudryashova D.A., Moshkin N.A. Building an 1D geomechanical model for complicated geological conditions using the example of a South Caspian field. Construction of Oil and Gas Wells on Land and Sea. 2024;(6):12–18. (InRuss.)
18. Мирошникова Л.К., Мезенцев А.Ю., КадыралиеваГ.А., Перепелкин М.А. Геодинамическое районирование юго-западной части Талнахской тектономагматической системы. Горная промышленность. 2021;(6):103–109. https://doi.org/10.30686/1609-9192-2021-6-103-109 Miroshnikova L.K., MezentsevA.Yu., KadyralievaG.A., Perepelkin M.A. Geodynamic zoning of the southwestern part of the Talnakh Orogenic System. Russian Mining Industry. 2021;(6):103–109. https://doi.org/10.30686/1609-9192-2021-6-103-109

