Laboratory measurement complex for studying rock deformation and failure processes
A.A. Tereshkin1, I.Yu. Rasskazov2, A.P. Grunin1, D.I. Tsoy1, M.I. Rasskazov1
1 Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation
2 Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation
Russian Mining Industry №4S / 2025 p. 134-139
Abstract: The process of rock failure under external pressure is of considerable interest for studying the geomaterial fracture mechanics. While failing, the sample generates acoustic signals, which are elastic waves caused by formation and growth of microcracks. These signals, known as acoustic emission, play a key role in monitoring and predicting the fracture processes of various scales.Acoustic emission signals are characterized by a number of parameters, such as their amplitude, duration, frequency, energy, which allow analyzing the dynamics of the fracture process. Depending on the conditions, the process can proceed at different rates, i.e. from quasi-static to dynamic fracture modes. Analysis of the acoustic emission signals helps not only to determine the failure stages, but also to better understand the mechanics of crack formation. The system for recording acoustic emission pulses developed at the Institute of Mining of the Far Eastern Branch of the Russian Academy of Sciences includes a hardware and software complex that provides highly sensitive signal detection, along with methods for processing and interpreting data, with the functionality of filtering, analyzing and identifying key pulse parameters, as well as determination of the individual event coordinates inside the sample being studied in laboratory conditions with specified parameters.
Keywords: acoustic emission, geodynamics, deformation methods, acoustic methods, waveform registration, primary converter, Fourier transform, methods of acoustic emission localization
For citation: Tereshkin A.A., Rasskazov I.Yu., Grunin A.P., Tsoy D.I., Rasskazov M.I. Laboratory measurement complex for studying rock deformation and failure processes. Russian Mining Industry. 2025;(4S):134–139. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-134-139
Article info
Received: 22.06.2025
Revised: 18.08.2025
Accepted: 25.08.2025
Information about the authors
Andrey A. Tereshkin – Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Igor Yu. Rasskazov – Dr. Sci. (Eng.), Academician of the Russian Academy of Sciences, Director, Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0002-2215-6642; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Aleksey P. Grunin – Cand. Sci. (Eng.), Senior Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Denis I. Tsoy – Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0002-4501-3724; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Maxim I. Rasskazov – Researcher, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0002-9130-8072; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Lockner D.A., Byerlee J.D., Kuksenko V. Ponomarev, A., Sidorin A. Chapter 1 Observations of quasistatic fault growth from acoustic emissions. International Geophysics. 1992;51:3–31. https://doi.org/10.1016/S0074-6142(08)62813-2
2. Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev A., Sidorin A. Quasi-static fault growth and shear fracture energy in granite. Nature. 1991;350:39–42. https://doi.org/10.1038/350039a0
3. Kuksenko V., Tomilin N., Damaskinskaya E., Lockner D. A two-stage model of fracture of rocks. Pure and Applied Geophysics. 1996;146(2):253–263. https://doi.org/10.1007/BF00876492
4. Терешкин А.А., Мигунов Д.С., Аникин П.А., Гладырь А.В., Рассказов М.И. Оценка геомеханического состояния удароопасного массива горных пород по данным локального геоакустического контроля. Проблемы недропользования. 2017;(1):72–80. https://doi.org/10.18454/2313-1586.2017.01.072Tereshkin A.A., Migunov D.S., Anikin P.A., Gladyr A.V., Rasskazov M.I. Evaluation geo-mechanical dangerous rock mass state according to local control geoacoustic data. Problems of Subsoil Use. 2017;(1):72–80. (In Russ.) https://doi.org/10.18454/2313-1586.2017.01.072
5. Ломов М.А., Константинов А.В., Терешкин А.А. Перспективные методы оценки и контроля геомеханического состояния массивов пород Проблемы недропользования. 2019;(4):83–90. Режим доступа: https://trud.igduran.ru/index.php/psu/article/view/449 (дата обращения: 07.06.2025).Lomov M.A., Konstantinov A.V., Tereshkin A.A. Prospective methods of assessment and control of the geomechanical state of rock masses. Problems of Subsoil Use. 2019;(4):83–90. (In Russ.) Available at: https://trud.igduran.ru/index.php/psu/article/view/449 (accessed: 07.06.2025).
6. van der Baan M., Chorney D. Insights from micromechanical modeling of intact rock failure: event characteristics, stress drops, and force networks. JGR Solid Earth. 2019;124(12):12955–12980. https://doi.org/10.1029/2019JB018121
7. Meng F., Song J., Yue Z., Zhou H., Wang X., Wang Z. Failure mechanisms and damage evolution of hard rock joints under high stress: Insights from PFC2D modeling. Engineering Analysis with Boundary Elements. 2022;135:394–411. https://doi.org/10.1016/j.enganabound.2021.12.007
8. Duan K., Li X., Kwok C.-Y., Zhang Q., Wang L. Modeling the orientation- and stress-dependent permeability of anisotropic rock with particle-based discrete element method. International Journal of Rock Mechanics and Mining Sciences. 2021;147:104884. https://doi.org/10.1016/j.ijrmms.2021.104884
9. Boese C.M., Kwiatek G., Fischer T., Plenkers K., Starke J., Blümle F. et al. Seismic monitoring of the STIMTEC hydraulic stimulation experiment in anisotropic metamorphic gneiss. Solid Earth. 2022;13(2):323–346. https://doi.org/10.5194/se-13-323-2022
10. Патонин А.В., Шихова Н.М., Пономарев А.В., Смирнов В.Б. Модульная система непрерывной регистрации акустической эмиссии для лабораторных исследований разрушения горных пород. Сейсмические приборы. 2018;54(3):35–55. https://doi.org/10.21455/si2018.3-3Patonin A.V., Shikhova N.M., Ponomarev A.V., Smirnov V.B. Module system of continuous acoustic emission registration for laboratory studies of the rocks destruction processes. Seismic Instruments. 2018;54(3):35–55. (In Russ.) https://doi.org/10.21455/si2018.3-3
11. Паньков И.Л., Евсеев В.С. Результаты экспериментального и теоретического определения прочности известняка в условиях трехосного сжатия по схеме Бекера. Горное эхо. 2024;(2):19–22. https://doi.org/10.7242/echo.2024.2.4Pankov I.L., Evseev V.S. Results of experimental and theoretical definition of limestone strength under triaxial compression using the Böker's method. Gornoe Ekho. 2024;(2):19–22. (In Russ.) https://doi.org/10.7242/echo.2024.2.4
12. Рассказов И.Ю., Федотова Ю.В., Аникин П.А., Сидляр А.В., Корчак П.А. Совершенствование автоматизированной системы геомеханического мониторинга и раннего предупреждения опасных геодинамических явлений. Горный информационно-аналитический бюллетень. 2022;(12-1):106–121. https://doi.org/10.25018/0236_1493_2022_121_0_106Rasskazov I.Yu., Fedotova Yu.V., Anikin P.A., Sidlyar A.V., Korchak P.A. Improvement of the automated system of geomechanical monitoring and early prevention of dangerous geodynamic phenomena. Mining Informational and Analytical Bulletin. 2022;(12-1):106–121. (In Russ.) https://doi.org/10.25018/0236_1493_2022_121_0_106

