Rocks as useful minerals of geothermal fields
A.N. Shulyupin
Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation
Russian Mining Industry №4S / 2025 p. 112-115
Abstract: The paper discusses general issues of extracting geothermal energy from its carriers based on analyzing the currently available technologies. A lack of scientific, methodological, and regulatory support, primarily in the mining sector, due to the negative processes during the ‘perestroika’ period is noted, which hinders the development of domestic geothermal resources. Consideration of geothermal resources from the point of view of thermal physics indicates their inherent connection with the energy carriers. This allows us to classify this type of georesources as a group of mineral deposits. A specific feature of geothermal fields (deposits) is noted, which consists in the possibility to find energy carriers in three phase states, i.e. solid, liquid and gaseous. At the same time, solid rocks, unlike carriers in the other phase states, are an obligatory, integral part of geothermal fields. The presence of both renewable and non-renewable reserves of fields is also noted. Using the example of the largest domestic geothermal field (Mutnovskoye in Kamchatka), it is shown that solid rocks constitute about 98% of the non-renewable part of the reserves, capable of providing the current level of energy production for more than a 100 years. The use of heat pumps in combination with coaxial borehole heat exchangers is shown to be a promising direction for the development of geothermal resources in the Arctic zone, which will reduce the severity of the soil thawing problem in areas of active human activities.
Keywords: geothermal resources, rocks, geothermal energy carriers, hot dry rock, geothermal deposit, enhanced geothermal systems, heat pump, borehole heat exchanger
For citation: Shulyupin A.N. Rocks as useful minerals of geothermal fields. Russian Mining Industry. 2025;(4S):112–115. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-112-115
Article info
Received: 06.07.2025
Revised: 18.08.2025
Accepted: 23.08.2025
Information about the author
Alexander N. Shulyupin – Corresponding Member of the Russian Academy of Sciences, Dr. Sci. (Eng.), Director, Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation; https://orcid.org/0000-0002-7379-410X; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Gutiérrez-Negrín L.C.A. Evolution of worldwide geothermal power 2020–2023. Geothermal Energy. 2024;12:14. https://doi.org/10.1186/s40517-024-00290-w
2. Томаров Г.В., Шипков А.А. Краткий обзор современного состояния и тенденций развития геотермальной энергетики. Теплоэнергетика. 2023;(2):37–46. https://doi.org/10.56304/S004036362302008XTomarov G.V., Shipkov A.A. Brief review of the current status and trends in the development of geothermal energy. Teploenergetika. 2023;(2):37–46. (In Russ.) https://doi.org/10.56304/S004036362302008X
3. Lund J.W., Huttrer G.W., Toth A.N. Characteristics and trends in geothermal development and use, 1995 to 2020. Geothermics. 2022;105:102522. https://doi.org/10.1016/j.geothermics.2022.102522
4. Шулюпин А.Н., Чермошенцева А.А., Чернев И.И., Любин А.А., Варламова Н.Н. Теоретические основы парлифтной добычи геотермальной энергии. Хабаровск: Амурпринт; 2024. 438 с.
5. Бутузов В.А., Томаров Г.В., Алхасов А.Б., Алиев Р.М., Бадавов Г.Б. Геотермальная энергетика России: ресурсная база, электроэнергетика, теплоснабжение (обзор). Теплоэнергетика. 2022;(1):3–17. https://doi.org/10.1134/S004036362112002XButuzov V.A., Tomarov G.V., Alkhasov A.B., Badavov G.B., Aliev R.M. Geothermal energy of Russia: Resources, electric power generation, and heat supply (a review). Teploenergetika. 2022;(1):3–17. (In Russ.) https://doi.org/10.1134/S004036362112002X
6. Агошков М.И. Развитие идей и практики комплексного освоения недр. М.; 1982. 25 с.
7. Liu Y., Zhang Y., Wang X., Bian K., Lei H. The characterization of fractures and analysis of hydraulic properties in granite-type hot dry rock reservoirs. Geothermics. 2025;130:103342. https://doi.org/10.1016/j.geothermics.2025.103342
8. Zhou J., Wang X., Xu J., Shi Z. Heat exchange efficiency and structural stability of assembled energy shafts: a novel shallow geothermal exploitation system for coastal urban cities. Geothermal Energy. 2025;13:25. https://doi.org/10.1186/s40517-025-00350-9
9. Дядькин Ю.Д. Разработка геотермальных месторождений. М.: Недра; 1989. 228 с.
10. Шулюпин А.Н., Чермошенцева А.А. Современные тенденции в освоении геотермальных ресурсов. Известия Тульского государственного университета. Науки о Земле. 2022;(1):165–176. https://doi.org/10.46689/2218-5194-2022-1-1-165-176Shulyupin A.N., Chermoshentseva A.A. Current trends in the development of geothermal resources. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2022;(1):165–176. (In Russ.) https://doi.org/10.46689/2218-5194-2022-1-1-165-176
11. Osgouei Y.T., Akin S. Experimental and numerical study of flow and thermal transport in fractured rock. Heat and Mass Transfer. 2021;57:1053–1068. https://doi.org/10.1007/s00231-020-03001-w
12. Шулюпин А.Н. Геотермальные ресурсы: основные понятия и современные тенденции освоения. Горный журнал. 2024;(6):33–37. https://doi.org/10.17580/gzh.2024.06.05Shulyupin A.N. Geothermal resources: Basic concepts and recent development trends. Gornyi Zhurnal. 2024;(6):33–37. (In Russ.) https://doi.org/10.17580/gzh.2024.06.05

