Water protection of kimberlite mines in the cryolithic zone by constructing underground ice barriers

DOI: https://doi.org/10.30686/1609-9192-2025-4S-94-98

Читать на русскоя языкеV.V. Kiselev, Yu.A. Khokholov , A.S. Kurilko, D.V. Hosoev
Mining Institute of the Far Eastern Branch of the Russian Academy of Sciences, Khabarovsk, Russian Federation

Russian Mining Industry №4S / 2025 p. 94-98

Abstract: The article presents research materials focused on solving water protection challenges in diamond mines in the cryolithic zone with high groundwater inflow. Based on an analysis of existing water protection methods, the authors have proposed and patented an ingenious method for the advance construction of an underground cryogenic ice barrier around a diamond-bearing pipe, which uses artificially generated cold. A description of the process diagram is provided for practical implementation of the method. The paper presents the results of numerical experiments conducted on a specially developed 3D mathematical model and the results of calculations with a developed software of the temperature conditions of the constructed barrier at different groundwater filtration rates, presented in graphical form. It is noted that the numerical implementation of the mathematical model allows selecting optimal, energy-saving operating modes for the freezing system that would ensure high rates of constructing a ring-shaped ice-and-rock water protection barrier around the diamond pipes. The technical feasibility and economic efficiency of the method are emphasized, which will contribute to cutting labor and financial costs and will ensure safe working conditions for the miners and for operation of the mining equipment.

Keywords: diamond-bearing deposit, diamond pipe, temporally abandoned open-pit mine, underground mine, water inflows, ice-and-rock structures, cryolithic zone

Acknowledgements: The study was carried out within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Topic No. 0297-2021-0021, EGISU NIOCTR No. 122011800083-0) using instruments that belong to the Shared core facilities of the Federal Research Center, Yakutsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences.

For citation: Kiselev V.V., Khokholov Yu.A., Kurilko A.S., Hosoev D.V. Water protection of kimberlite mines in the cryolithic zone by constructing underground ice barriers. Russian Mining Industry. 2025;(4S):94–98. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-94-98


Article info

Received: 25.06.2025

Revised: 13.08.2025

Accepted: 22.08.2025


Information about the authors

Valery V. Kiselev – Cand. Sci. (Eng.), Senior Researcher, Mining Geophysics Laboratory, N.V. Chersky Institute of Mining of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation

Yury A. Khokholov – Dr. Sci. (Eng.), Leading Researcher, Mining Geophysics Laboratory, N.V. Chersky Institute of Mining of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; https://orcid.org/0000-0002-9510-3808; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Aleksandr S. Kurilko – Dr. Sci. (Eng.), Leading Researcher, Mining Geophysics Laboratory, N.V. Chersky Institute of Mining of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Dorzho V. Hosoev – Junior Research, N.V. Chersky Institute of Mining of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation


References

1. Архипов А.Г. Последний путь подземного рудника «Мир»: Исследование причин катастрофы 4 августа 2017 г. СПб.: Политехника; 2019. 264 с.

2. Combefort H. Injection des sols. Vol. 1: Principes et methods. Paris: Edition Eyrolles; 1964. 393 p.

3. Заровняев Б.Н., Шубин Г.В., Васильев И.В., Курилко А.С., Каймонов М.В. Специфика комбинированной доработки глубоких алмазных трубок в условиях криолитозоны. Горный информационно-аналитический бюллетень. 2012;(S7):189–195.Zarovnyaev B.N., Shubin G.V., Vasiliev I.V., Kurilko A.S., Kaymonov M.V. Specific features of the combined cleaning-up of deep diamond pipes in conditions of the cryolithic zone. Mining Informational and Analytical Bulletin. 2012;(S7):189–195. (In Russ.)

4. Андреев М.Н., Богуславский Э.И. Технология разработки подкарьерных запасов кимберлитовых трубок в сложных гидрогеологических условиях. Записки Горного института. 2011;190:138–142. Режим доступа: https://pmi.spmi.ru/pmi/article/view/6439 (дата обращения: 22.05.2025).Andreev M.N., Boguslavskii E.I. Technology of kimberlitic tubes underquarry deposits mining in complex hydro-geological conditions. Journal of Mining Institute. 2011;190:138–142. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/6439 (accessed: 22.05.2025).

5. Дроздов А.В., Иост Н.А., Лобанов В.В. Криогидрогеология алмазных месторождений Западной Якутии. Иркутск : Изд-во ИрГТУ; 2008. 507 с.

6. Дроздов А.В., Крамсков Н.П., Гензель Г.Н. Особенности гидрогеомеханического мониторинга под водными объектами на алмазных месторождениях Западной Якутии. Вестник Иркутского государственного технического университета. 2011;(1):72–79.Drozdov A.V., Kramskov N.P., Genzel G.N. Features of hydrogeomechanical monitoring under water bodies at diamond deposits of Western Yakutia. Proceedings of Irkutsk State Technical University. 2011;(1):72–79. (In Russ.)

7. Хохолов Ю.А., Романова Е.К., Хосоев Д.В., Киселев В.В. Способ опережающего возведения подземных ледопородных барьеров для защиты кимберлитовых рудников криолитозоны от высоконапорных водопритоков. Патент РФ RU2827249C1. Опубл.: 23.09.2024.

8. Chen Z., Guo X., Shao L., Wang X., Li S. Calorimetry of a multicomponent system for the analysis of frozen soil specific heat test considering the effect of latent heat. Eurasian Soil Science. 2020;53:207–214. https://doi.org/10.1134/S1064229320020039

9. Zhang W., Lei H., Wang L., Bo Y., Zhan C. Investigation and prediction on the freezing point of the clay under different salinity conditions. Bulletin of Engineering Geology and the Environment. 2024;83(8):341. https://doi.org/10.1007/s10064-024-03832-5

10. Zhou Y., Huang H., Liu M., Li M., Suo X. Frost heave model and frost heaving force analysis of permafrost tunnel based on segregated ice. Tunnelling and Underground Space Technology. 2024;47:105715. https://doi.org/10.1016/j.tust.2024.105715

11. Zhelnin M., Kostina A., Prokhorov A., Plekhov O., Semin M., Levin L. Coupled thermo-hydro-mechanical modeling of frost heave and water migration during artificial freezing of soils for mineshaft sinking. Journal of Rock Mechanics and Geotechnical Engineering. 2022;14(2):537–559. https://doi.org/10.1016/j.jrmge.2021.07.015

12. Xiao Z., Li K., Duan J., Zhang S. Study on the multi-field-coupling model of saline frozen soil considering ice and salt crystallization. Computers and Geotechnics. 2024;169:106209. https://doi.org/10.1016/j.compgeo.2024.106209

13. Самарский А.А., Моисеенко Б.Д. Экономичная схема сквозного счета для многомерной задачи Стефана. Журнал вычислительной математики и математической физики. 1965;5(5):816–827.Samarskii A.A., Moiseyenko B.D. An economic continuous calculation scheme for the Stefan multidimensional problem. USSR Computational Mathematics and Mathematical Physics. 1965;5(5):43–58. https://doi.org/10.1016/0041-5553(65)90004-2

14. Пермяков П.П., Аммосов А.П. Математическое моделирование техногенного загрязнения в криолитозоне. Новосибирск: Наука; 2003. 223 с.

15. Anderson D.M., Morgenstern N.R. Physics, chemistry and mechanics of frozen Ground: A review. In: Permafrost: North American Contribution. Washington, DC: The National Academies Press; 1973, pp. 257–288. https://doi.org/10.17226/20223