Experimental studies of the mineral particle separation processes in a laboratory model of the centrifugal pneumatic separator

DOI: https://doi.org/10.30686/1609-9192-2025-4S-36-39

Читать на русскоя языкеI.F. Lebedev
N.V. Chersky Mining Institute of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation

Russian Mining Industry №4S / 2025 p. 36-39

Abstract: The paper discusses existing methods and devices of dry preparation, which are mainly used for classifying materials by size. Considering the prospects of mineral processing using the dry methods in areas with a shortage of the process water, there exists a need to conduct research to study the behavior of mineral particles of various densities and sizes in artificially created and controlled air-sand flows in order to develop new promising technological and technical solutions to process mineral raw materials with high and medium density by pneumatic separation.The paper presents analytical studies in dry preparation of mineral particles in pneumatic separators. The results of the studies showed the prospects of using centrifugal forces, in addition to the gravitational ones, for development of new models of pneumatic separators.A laboratory model test bench of a pneumatic separator was developed by the authors for experimental studies of separation of mineral particles with different densities and sizes in terms of their migration capacity in an aerodynamic flow with the application of centrifugal force fields. The article presents a methodology for conducting experimental tests using the developed model for studying not only the classification of mineral particles by size, but also the redistribution of heavy and light particles under the impact of the aerodynamic air flow and centrifugal force. The results are provided of the experiments on separating heavy fractions of different particle sizes from light fractions in a model of a laboratory centrifugal drum-type pneumatic separator with chambers for classification. A possibility of combining classification by particle size and concentration by specific gravity (density) in one device was confirmed experimentally using the laboratory stand.

Keywords: pneumatic preparation, pneumatic separator, mineral particles, experimental studies, size classes, particle-size distribution

Acknowledgements: The study was carried out within the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Topic No. 0297-2021-0022, EGISU NIOCTR No. 122011800089-2).

For citation: Lebedev I.F. Experimental studies of the mineral particle separation processes in a laboratory model of the centrifugal pneumatic separator. Russian Mining Industry. 2025;(4S):36–39. (In Russ.) https://doi.org/10.30686/1609-9192-2025-4S-36-39


Article info

Received: 05.06.2025

Revised: 07.08.2025

Accepted: 15.08.2025


Information about the authors

Ivan F. Lebedev – Cand. Sci. (Eng.), Senior Researcher, N.V. Chersky Institute of Mining of the North of the Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation; https://orcid.org/0000-0003-1116-8872; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Синица Е.В., Сафронов С.Е., Иванов Н.А., Журавлев И.А. Анализ оборудования для классификации порошкообразных материалов. В кн.: Наукоемкие технологии и инновации (24-енаучные чтения): сб. докл. Междунар. науч.-практ. конф., г. Белгород, 21–22 октября 2021 г. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова; 2021. С. 248–256.

2. Gavrilieva U., Vasilyeva M., Chung E.T. Generalized multiscale finite element method for elastic wave propagation in the frequency domain. Computation. 2020;8(3):63. https://doi.org/10.3390/computation8030063

3. Chung E., Pun S.-M. Computational multiscale methods for first-order wave equation using mixed CEM-GMsFEM. Journal of Computational Physics. 2020;409(2):109359. https://doi.org/10.1016/j.jcp.2020.109359

4. Tyrylgin A., Vasilyeva M., Chung E.T. Embedded fracture model in numerical simulation of the fluid flow and geo-mechanics using Generalized Multiscale Finite Element Method. Journal of Physics: Conference Series. 2019;1392:012075. https://doi.org/10.1088/1742-6596/1392/1/012075

5. Vasilyeva M., Chung E.T., Efendiev Y., Kim J. Constrained energy minimization based upscaling for coupled flow and mechanics. Journal of Computational Physics. 2019;376:660–674. https://doi.org/10.1016/j.jcp.2018.09.054

6. Терехова О.Н., Дуюнова Я.С. Пневмоцентробежная классификация дисперсных частиц в процессе переработки зерна в муку. Техника и технология пищевых производств. 2024;54(1):124–134. https://doi.org/10.21603/2074-9414-2024-1-2494Terekhova O.N., Duyunova Ya.S. Pneumocentrifugal classification of dispersed particles during grain milling. Food Processing: Techniques and Technology. 2024;54(1):124–134. (In Russ.) https://doi.org/10.21603/2074-9414-2024-1-2494

7. Соломаха А.Е., Шваб А.В. Моделирование аэродинамики закрученного турбулентного потока в воздушноцентробежном классификаторе. Вестник Томского государственного университета. Математика и механика. 2024;87:150–162. https://doi.org/10.17223/19988621/87/12Solomakha A.E.1, Shvab A.V. Simulation of aerodynamics of a swirling turbulent flow in a centrifugal air classifier. Tomsk State University Journal of Mathematics and Mechanics. 2024;87:150–162. (In Russ.) https://doi.org/10.17223/19988621/87/12

8. Перепелкин М.А., Склянов В.И. Динамическое моделирование подвижности минеральной постели в центробежных концентраторах. Горная промышленность. 2021;(2):114–119. https://doi.org/10.30686/1609-9192-2021-2-114-119Perepelkin M.A., Sklyanov V.I. Dynamic modeling of mineral bed mobility in centrifugal concentrators. Russian Mining Industry. 2021;(2):114–119. (In Russ.) https://doi.org/10.30686/1609-9192-2021-2-114-119

9. Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен [пер. с англ. С.В. Сенина, Е.Ю. Шальмана; под ред. Г.Л. Подвидза]. М.: Мир; 1990. Т. 1. 385 с.

10. Любимов Д.А. Анализ турбулентных струйных и отрывных течений в элементах ТРД комбинированными RANS/LES-методами высокого разрешения [дис. ... д-ра физ.-мат. наук]. М.; 2014. 289 с.

11. Романюк Д.А., Циркунов Ю.М. Нестационарные двухфазные течения газа с частицами в решетках профилей. Известия Российской академии наук. Механика жидкости и газа. 2020;(5):33–45. https://doi.org/10.31857/S0568528120050126Romanyuk D.A., Tsirkunov Y.M. Unsteady two-phase gas-particle flows in blade cascades. Fluid Dynamics. 2020;55(5):609–620. https://doi.org/10.1134/S0015462820050122