Specific features in the geological structure of the evaporite formation of the Amu-Darya oil and gas basin

DOI: https://doi.org/10.30686/1609-9192-2025-5-152-158

Читать на русскоя языкеA.R. Deryaev
State Concern “Тurkmengaz”, Ashgabat, Turkmenistan

Russian Mining Industry №5 / 2025 p. 152-158

Abstract: The objective of the study was to analyze the main features in the geological structure of the evaporite formation in the Amu-Darya oil and gas basin in order to improve our understanding of the geological and environmental history of the region and to identify the potential of these deposits for various applications. Geological mapping, analysis of the mineral composition of the rocks, stratigraphic analysis, and geochemical studies were used in this study. The results showed that the evaporite formation in the Amu-Darya syncline consists mainly of the salt and sulfate rocks with a distinctive crystalline and fine-grained texture. This structure was formed under the impact of intensive water evaporation processes in the past, which is a key factor in understanding its genesis. Geological analysis has revealed the presence of geomorphological features such as salt lakes and salt marshes, which reflect the history of climatic and tectonic changes in the region. These features in the geological structure of the evaporite formation are important for a deeper understanding of its evolution over geological time and for determining its potential in various aspects, including environmental, economic, and scientific applications. Understanding the evaporite formation processes makes it possible to better assess the environmental aspects associated with these deposits and develop efficient strategies for managing the region's natural resources. Such a kind of research complements the general scientific knowledge of geologic development processes and can serve as a basis for future studies in the fields of geology, ecology, and geochemistry in this region.

Keywords: geological structure, evaporite formation, geological research, sedimentary rocks, minerals, ecological environment

For citation: Deryaev A.R. Specific features in the geological structure of the evaporite formation of the Amu-Darya oil and gas basin. Russian Mining Industry. 2025;(5):152–158. (In Russ.) https://doi.org/10.30686/1609-9192-2025-5-152-158


Article info

Received: 17.05.2025

Revised: 09.07.2025

Accepted: 10.07.2025


Information about the author

Annaguly R. Deryaev – Dr. Sci. (Eng.), Chief Research Associate, State Concern “Тurkmengaz”, Ashgabat, Turkmenistan; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Деряев А.Р. Бурение направленной разведочной скважины в мелководье Каспия. Горные науки и технологии. 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217 Deryaev A.R. Directional drilling of an exploratory well in the shallow waters of the Caspian Sea. Mining Science and Technology (Russia). 2024;9(4):341-351. https://doi.org/10.17073/2500-0632-2024-02-217

2. Деряев А.Р. Регулирование реологических свойств утяжеленных тампонажных растворов при цементировании глубоких скважин в условиях аномально высокого пластового давления. Нефтяное хозяйство. 2024;(5);86–90. https://doi.org/10.24887/0028-2448-2024-5-86-90 Deryaev A.R. Regulation of rheological properties of weighted grouting solutions during cementing of deep wells under conditions of abnormally high reservoir pressure. Neftyanoe Khozyaystvo. 2024;(5);86–90. (In Russ.) https://doi.org/10.24887/0028-2448-2024-5-86-90

3. Shields G.A., Mills B.J.W. Evaporite weathering and deposition as a long-term climate forcing mechanism. Geology. 2021;49(3):299–303. https://doi.org/10.1130/G48146.1

4. Абдуллаев Г.С., Эйдельнант Н.К., Богданов А.Н. Результаты реализации программы целенаправленных геологоразведочных работ с целью изучения палеозойского комплекса Бухаро-Хивинского региона Республики Узбекистан. Актуальные проблемы нефти и газа. 2020;(1):1–28. https://doi.org/10.29222/ipng.2078-5712.2020-28.art2 Abdullaev G.S., Eidelnant N.K., Bogdanov A.N. Results of the implementation of the program of targeted geological exploration works for the purpose of studying the Paleozoic complex of the Bukhara-Khiva region of the Republic of Uzbekistan. Actual Problems of Oil and Gas. 2020;(1):1–28. (In Russ.) https://doi.org/10.29222/ipng.2078-5712.2020-28.art2

5. Jin Z., Nie H. Evolution history of overpressured and normally pressured shale gas reservoirs in wufeng formation – Longmaxi Formation, Sichuan Basin, China: An analysis from the perspective of source and seal coupling mechanism. Energy & Fuels. 2022;36(18):10870–10885. https://doi.org/10.1021/acs.energyfuels.2c01925

6. Kumar R., Al-Mutairi T., Bansal P., Havelia K., Ben Amor F., Farhan B. et al. Connecting the dots between geology and seismic to mitigate drilling risks: Mapping & characterization of the high pressure high temperature gotnia formation in kuwait. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2021. https://doi.org/10.2118/207452-MS

7. Chang J., Li Y., Lu H. The morphological characteristics of authigenic pyrite formed in marine sediments. Journal of Marine Science and Engineering. 2022;10(10):1533. https://doi.org/10.3390/jmse10101533

8. Duffy O., Hudec M., Peel F., Apps G., Bump A., Moscardelli L. et al. The Role of salt tectonics in the energy transition: An overview and future challenges. Τekτonika. 2023;1(1):18–48. https://doi.org/10.55575/tektonika2023.1.1.11

9. Sirota I., Enzel Y., Mor Z., Moshe L.B., Eyal H., Lowenstein T.K., Lensky N.G. Sedimentology and stratigraphy of a modern halite sequence formed under Dead Sea level fall. Sedimentology. 2021;68(3):1069–1090. https://doi.org/10.1111/sed.12814

10. Raad S.M.J., Leonenko Y., Hassanzadeh H. Hydrogen storage in saline aquifers: Opportunities and challenges. Renewable and Sustainable Energy Reviews. 2022;168:112846. https://doi.org/10.1016/j.rser.2022.112846

11. Pal S.C., Saha A., Chowdhuri I., Ruidas D., Chakrabortty R., Roy P., Shit M. Earthquake hotspot and coldspot: Where, why and how? Geosystems and Geoenvironment. 2023;2(1):100130. https://doi.org/10.1016/j.geogeo.2022.100130

12. Luo A., Li Y., Chen X., Zhu Z., Peng Y. Review of CO2 sequestration mechanism in saline aquifers. Natural Gas Industry B. 2022;9(4):383–393. https://doi.org/10.1016/j.ngib.2022.07.002

13. Charton R., Kluge C., Fernández-Blanco D., Duval-Arnould A., Bryers O., Redfern J., Bertotti G. Syn-depositional Mesozoic siliciclastic pathways on the Moroccan Atlantic margin linked to evaporite mobilization. Marine and Petroleum Geology. 2021;128:105018. https://doi.org/10.1016/j.marpetgeo.2021.105018

14. Rioja H.S.S., Saravias S., López M. Geological, legal and environmental aspects of lithium brine projects, NW Argentina. Brazilian Journal of Development. 2023;9(11):29387–29395. https://doi.org/10.34117/bjdv9n11-007

15. Omidpour A., Rahimpour-Bonab H., Moussavi-Harami R., Mahboubi A. Anhydrite fabrics as an indicator for relative sea-level signatures in the sequence stratigraphic framework of a carbonate ramp. Marine and Petroleum Geology. 2023;155:106400. https://doi.org/10.1016/j.marpetgeo.2023.106400