Development of scientific principles for designing a multi-flow reversible ejector fitted with a rotating nozzle
Yu.A. Sazonov, M.A. Mokhov, I.V. Gryaznova , V.V. Voronova, Kh.A. Tumanyan
National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation
Russian Mining Industry №5 / 2025 p. 146-151
Abstract: Jet control systems are widely used to solve practical tasks in many industries, including mining and transportation of liquid and gaseous hydrocarbons. Unlike traditional ejectors, the use of a multi-flow reversible ejector opens up unique opportunities for the efficient distribution of energy across different channels and in any direction within a three-dimensional space. The article discusses options for the jet control systems that use a rotating nozzle and intelligent nozzle devices with the application of the CFD technology. The authors of the article propose new scientific principles of designing a multi-flow reversible ejector with controlled energy distribution across the ejector channels, including the use of a rotating diffuser in an upgraded de Laval nozzle. The results of the performed studies are mainly used to promote scientific research and development activities in creation of energy-efficient oil and gas production technologies. Some of the research results can be used in developing promising robotic equipment for various purposes.The results of the study show that digitalization leads to a 21.4% reduction in the share of workers in traditional jobs, while the demand for IT specialists grows by 285% and that for operators of robotic systems by 156%. The economic efficiency ratio of digitalization is 2.12, and the return on investment period is reduced from 7.8 to 4.2 years. A positive correlation has been established between the level of digitalization and the labour productivity (r = 0.821). The theoretical significance of the work lies in developing conceptual ideas on transformation of labour relations in the digital economy in specific conditions of the mining industry. The practical value is defined by the possibility of using the obtained results for strategic planning of the human resources development and optimization of the investment decisions in the field of digitalization of coal companies.
Keywords: multi-flow ejector, rotating nozzle, Euler effect, mixing chamber, CFD technologies
Acknowledgements: The research was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of the state assignment No. FSZE-2023-0004.
For citation: Sazonov Yu.A., Mokhov M.A., Gryaznova I.V., Voronova V.V., Tumanyan Kh.A. Development of scientific principles for designing a multi-flow reversible ejector fitted with a rotating nozzle. Russian Mining Industry. 2025;(5):146–151. (In Russ.) https://doi.org/10.30686/1609-9192-2025-5-146-151
Article info
Received: 27.06.2025
Revised: 04.08.2025
Accepted: 06.08.2025
Information about the authors
Yuri A. Sazonov – Dr. Sci. (Eng.), Professor, Department of Machinery and Equipment for Oil and Gas Industry, National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Mikhail A. Mokhov – Dr. Sci. (Eng.), Professor, Department of Oil Field Development and Operation, National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Inna V. Gryaznova – Cand. Sci. (Eng.), Senior Research Associate, Institute of Rock Physics, National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Viktoriya V. Voronova – Cand. Sci. (Eng.), Senior Research Associate, Institute of Rock Physics, National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Khoren A. Tumanyan – Junior Research Associate, Institute of Rock Physics, National University of Oil and Gas “Gubkin University”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Knoeller M.C., Robison C.E., Agarwal M., Paulet B.A. Jet pump controller with downhole prediction. United States Patent 11078766. Publication Date: 03.08.2021. Available at: https://www.freepatentsonline.com/11078766.pdf (accessed: 28.09.2024).
2. Каменев П.Н. Гидроэлеваторы в строительстве. 2-е изд., перераб. и доп. М.: Стройиздат; 1970. 414 с.
3. Сазонов Ю.А. Основы расчета и конструирования насосно-эжекторных установок. М.: РГУ нефти и газа имени И.М. Губкина; 2012. 300 с. Режим доступа: https://www.gubkin.ru/faculty/mechanical_engineering/chairs_and_departments/machines_and_equipment/Sazonov_Yu.A._Osnovy_rascheta_i_konstr-niya_nas.-ezhekt._ustanovok.pdf (дата обращения: 05.02.2025).
4. Pugh T., O Nunez., Juenke M. Reverse flow jet pump. United States Patent US10788054B2. Publication Date: 29.09.2020. Available at: https://patents.google.com/patent/US10788054B2/en (accessed: 28.05.2025).
5. Wang Y., Wang N. Influence of the projectile rotation on the supersonic fluidic element. Aerospace. 2023;10(1):35. https://doi.org/10.3390/aerospace10010035
6. Wei S.-S., Li M.-C., Lai A., Chou T.-H., Wu J.-S. A review of recent developments in hybrid rocket propulsion and its applications. Aerospace. 2024;11(9):739. https://doi.org/10.3390/aerospace11090739
7. Усс А.Ю., Чернышев А.В., Пугачук А.С. Проектирование газореактивного привода с системой управления тягой при помощи вихревого клапана. Омский научный вестник. Серия Авиационно-ракетное и энергетическое машиностроение. 2021;5(2):47–58. https://doi.org/10.25206/2588-0373-2021-5-2-47-58 Uss A.Yu., Chernyshev A.V., Pugachuk A.S. Design of gas-jet drive with vortex valve thrust control system. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2021;5(2):47–58. (In Russ.) https://doi.org/10.25206/2588-0373-2021-5-2-47-58
8. He Y., Shi X., Ji H. Optimal Design of Ejector Nozzle Profile with Internal and External Integrated Flow. Aerospace. 2024;11(3):184. https://doi.org/10.3390/aerospace11030184
9. Еремин А.М. Условия оптимальности классических эжекторов в различных теориях критических режимов. Труды МАИ. 2023;(130):1–34. Режим доступа: https://trudymai.ru/published.php?ID=174600 (дата обращения: 05.02.2025). Eremin A.M. Conditions of optimality of classical ejectors in the frame of different theories of critical mode. Trudy MAI. 2023;(130):1–34. (In Russ.) Available at: https://trudymai.ru/published.php?ID=174600 (accessed: 05.02.2025)
10. Башарина Т.А., Ельцов И.С., Акользин И.В., Кружаев К.В. Разработка водоструйного эжектора с широким диапазоном расходной характеристики. Труды МАИ. 2024;(134):1–22. Режим доступа: https://trudymai.ru/published.php?ID=178463 (дата обращения: 05.02.2025). Basharina T.A., Yeltsov I.S., Akolzin I.V., Kruzhaev K.V. Development of water jet ejector with a wide range of flow characteristics. Trudy MAI. 2024;(134):1–22. (In Russ.) Available at: https://trudymai.ru/eng/published.php?ID=178463 (accessed: 05.02.2025).
11. Халиуллин Р.Р. Повышение эффективности энергетических ГТУ применением эжекторных систем [Дис. … канд. техн. наук]. Казань; 2019. 136 с.
12. Картас С.С. Влияние геометрических параметров эжектора с криволинейным участком камеры смешения на его коэффициент эжекции. В кн.: Абдуллазянов Э.Ю. (ред.) Тинчуринские чтения-2020 «Энергетика и цифровая трансформация»: материалы Междунар. молодеж. науч. конф., г. Казань, 28–29 апреля 2020 г. Казань: Казанский государственный энергетический университет; 2020. Т. 2. С. 101–103.
13. Картас С.С., Панченко В.И., Александров Ю.Б. Выбор модели турбулентной вязкости для численного расчета эжектора с криволинейным участком камеры смешения. Известия высших учебных заведений. Авиационная техника. 2019;(4):87–90. Kartas S.S., Panchenko V.I., Aleksandrov Y.B. Selection of the turbulent viscosity model for numerical calculation of the ejector with a curvilinear section of the mixing chamber. Russian Aeronautics. 2019;62(4):620–624. https://doi.org/10.3103/S1068799819040123
14. Картас С.С., Александров Ю.Б. Сравнения характеристик криволинейного и прямолинейного эжекторов. В кн.: XXIV Туполевские чтения (школа молодых ученых): материалы Междунар. молодёж. науч. конф., г. Казань, 7–8 ноября 2019 г. Казань: ИП А.Р. Сагиева; 2019. Т. 2. С. 226–228.
15. Картас С.С., Панченко В.И., Александров Ю.Б. Влияние геометрических параметров эжектора с криволинейным участком камеры смешения на его характеристику. Вестник Московского авиационного института. 2019;26(4):166–173. https://doi.org/10.34759/vst-2019-4-166-173 Kartas S.S., Panchenko V.I., Aleksandrov Yu.B. Geometric parameters effect of ejector with curvilinear section of mixing chamber on its characteristic. Aerospace MAI Journal. 2019;26(4):166–173. (In Russ.) https://doi.org/10.34759/vst-2019-4-166-173
16. Панченко В.И., Раскин А.И., Сыченков В.А., Волостнов Г.В., Халиулин Р.Р. Эжектор. Патент РФ RU119417U1. Опубл. 20.08.2012.
17. Friedmann G. Injection mixer. United States Patent US2623474A. Publication Date: 30.12.1952. Available at: https://patents.google.com/patent/US2623474A/en (accessed: 28.05.2025).
18. Wheatley M.J. Apparatus for energy transfer. UK Patent Application GB0213375D0. Publication Date: 24.07.2002. Available at: https://patents.google.com/patent/GB0213375D0/en (accessed: 28.05.2025).
19. Wu W., Xu Y., Yan Y., Li S., Zhang J., Wang Z. Investigation on the flow characteristics of rotating nozzle cavitation water jet flow field. Journal of Applied Fluid Mechanics. 2024;17(12):2637-2651. https://doi.org/10.47176/jafm.17.12.2741
20. Sazonov Yu.A., Mokhov M.A., Gryaznova I.V., Voronova V.V., Tumanyan K.A., Konyushkov E.I. Thrust vector control within a geometric sphere, and the use of Euler’s tips to create jet technology. Civil Engineering Journal. 2023;9(10):2516–2534. https://doi.org/10.28991/CEJ-2023-09-10-011
21. Sazonov Yu.A., Mokhov M.A., Gryaznova I.V., Voronova V.V., Tumanyan K.A., Konyushkov E.I. Solving innovative problems of thrust vector control based on Euler’s scientific legacy. Civil Engineering Journal. 2023;9(11):2868–2895. https://doi.org/10.28991/CEJ-2023-09-11-017
22. Sazonov Yu.A., Mokhov M.A., Bondarenko A.V., Voronova V.V., Tumanyan K.A., Konyushkov E.I. Interdisciplinary studies of jet systems using euler methodology and computational fluid dynamics technologies. HighTech and Innovation Journal. 2023;4(4):703–719. https://doi.org/10.28991/HIJ-2023-04-04-01
23. Sazonov Y.A., Mokhov M.A., Bondarenko A.V., Voronova V.V., Tumanyan K.A., Konyushkov E.I.. Investigation of a multiflow ejector equipped with variable-length links for thrust vector control using Euler’s methodology. Eng. 2024;5(4):2999–3022. https://doi.org/10.3390/eng5040156

