Rationale for using pyrrolidinedithiocarbamate in extraction of sulfide minerals of non-ferrous and noble metals from complex ores

DOI: https://doi.org/10.30686/1609-9192-2025-5S-52-58

Читать на русскоя языке T.N. Matveyeva, N.K. Gromova, L.B. Lantsova
Institute of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, Moscow, Russian Federation
Russian Mining Industry №5S/ 2025 p. 52-58

Abstract: Creation and application of new selective reagents is one of the global trends in flotation development, especially in conditions of decreasing useful metal content in the mined ores, complex mutual intergrowth of the mineral grains, uneven impregnation and complex material composition of the ores. Such characteristics are typical of the so-called refractory ores, which are currently the mineral raw materials for obtaining most metals. The complex composition of ores, on the one hand, makes it possible to obtain concentrates of several metals without increasing the environmental load on the natural landscape, on the other hand, it increases the requirements for the quality of finished products in terms of undesirable impurities, i.e. compliance with the conditions for selective separation of heterogeneous concentrates for subsequent metallurgical processing. Increasing the efficiency of separating mineral complexes under flotation conditions can be ensured by the selective action of a new generation of the flotation reagents. The aim of this work was to study a new reagent of the dithiocarbamates - pyrrolidine dithiocarbamate (PyrroDTC) class as a collector of sulfide minerals in flotation of complex gold-copper ore of the Malinovskoye deposit. LEO 1420VP scanning electron and KEYNCE VK-9700 laser microscopes were used to identify the reagent phases in the polished sections of individual minerals and ore samples that are different in appearance, quantity, composition and strength of fixation depending on the composition of the mineral. Shimadzu-1800 UV spectrophotometer determined the 0.53 mg/g adsorption of PyrroDTC on chalcopyrite. Increased adsorption of PyrroDTC on chalcopyrite contributed to an increase in the copper content in the concentrate from 9.77 to 13.33–15.2% and an increase in copper extraction from 91.15 to 93.16%. Lower flotation activity in relation to arsenopyrite and scheelite resulted in a decrease in the arsenic content in the copper concentrate and a reduction in tungsten losses with the copper concentrate.

Keywords: complex ores, flotation, pyrrolidine dithiocarbamate, electron microscopy, laser microscopy, adsorption

Acknowledgements: The authors express their gratitude to Candidates of Geological and Mining Sciences E.V. Koporulina and V.A. Minaev for their assistance in conducting the research.

For citation: Aynbinder I.I., Patskevich P.G. Rationale for using pyrrolidinedithiocarbamate in extraction of sulfide minerals of non-ferrous and noble metals from complex ores. Russian Mining Industry. 2025;(5S):52–58. (In Russ.) https://doi.org/10.30686/1609-9192-2025-5S-52-58


Article info

Received: 27.08.2025

Revised: 06.10.2025

Accepted: 09.10.2025


Information about the authors

Tamara N. Matveeva – Dr. Sci. (Eng.), Head of Department, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation; https://orcid.org/0000-0002-5658-9948; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Nadezhda K. Gromova – Research Associate, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation; https://orcid.org/0000-0002-4753-5745; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Ludmila B. Lantsova – Research Associate, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, Moscow, Russian Federation; https://orcid.org/0009-0009-4585-1531; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.


References

1. Aleksandrova T.N., Orlova A.V., Taranov V.A. Enhancement of copper concentration efficiency in complex ore processing by the reagent regime variation. Journal of Mining Science. 2020;56(6):982–989. https://doi.org/10.1134/S1062739120060101

2. Бочаров В.А., Игнаткина В.А., Каюмов А.А. Теория и практика разделения минералов массивных упорных полиметаллических руд цветных металлов. М.: Горная книга; 2019. 510 c.

3. Semushkina L., Abdykirova G., Mukhanova A., Mukhamedilova A. Improving the copper-molybdenum ores flotation technology using a combined collecting agent. Minerals. 2022;12(11):1416. https://doi.org/10.3390/min12111416

4. Mitrofanova G.V., Chernousenko E.V., Bazarova E.A., Tyukin A.P. The search for new complexing reagents for copper-nickel ore flotation. Tsvetnye Metally. 2019;(11):27–33. (In Russ.) https://doi.org/10.17580/tsm.2019.11.02

5. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Aburova V., Prokhorova E. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023;13(1):84. https://doi.org/10.3390/min13010084

6. Spooren J., Binnemans K., Björkmalm J., Breemersch K., Dams Y., Folens K. et al. Near-zero-waste processing of low-grade, complex primary ores and secondary raw materials in Europe: technology development trends. Resources, Conservation and Recycling. 2020;160:104919. https://doi.org/10.1016/j.resconrec.2020.104919

7. Milosavljević M.M., Marinković A.D., Rančić M., Milentijević G., Bogdanović A., Cvijetić I.N., Gurešić D. New eco-friendly xanthate-based flotation agents. Minerals. 2020;10(4):350. https://doi.org/10.3390/min10040350

8. Lopéz R., Jordão H., Hartmann R., Ämmälä A., Carvalho M.T. Study of butyl-amine nanocrystal cellulose in the flotation of complex sulphide ores. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;579:123655. https://doi.org/10.1016/j.colsurfa.2019.123655

9. Jingjing X., Guangyi L., Hong Z., Yaoguo H., Zhanfang C. The flotation behavior and adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester to chalcopyrite. Journal of the Taiwan Institute of Chemical Engineers. 2017;71:38–46. https://doi.org/10.1016/j.jtice.2016.12.022

10. Tijsseling L.T., Dehaine Q., Rollinson G.K., Glass H.J. Flotation of mixed oxide sulphide copper-cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors. Minerals Engineering. 2019;138:246–256. https://doi.org/10.1016/j.mineng.2019.04.022

11. Ly N.H., Nguyen T.D., Zoh K.-D., Joo S.-W. Interaction between diethyldithiocarbamate and Cu(II) on gold in non-cyanide wastewater. Sensors. 2017;17(11):2628. https://doi.org/10.3390/s17112628

12. Matveeva T.N., Gromova N.K., Lantsova L.B. Experimental proof of applicability of cyclic and aliphatic dithiocarbamate collectors in gold-bearing sulphide recovery from complex ore. Journal of Mining Science. 2021;57(1):123–130. https://doi.org/10.1134/S1062739121010130

13. Matveeva T.N., Gromova N.K., Lantsova L.B., Gladysheva O.I. Mechanism of interaction between morpholine dithiocarbamate and cyanoethyl diethyldithiocarbamate reagents and low-dimensional gold on the surface of sulfide minerals in flotation of difficult gold-bearing ore. Journal of Mining Science. 2022;58(4):610–618. https://doi.org/10.1134/S106273912204010X

14. Matveeva T.N., Gromova N.K., Lantsova L.B., Gladysheva O.I. Experimental justification of cyanoethyl dithiocarbamate usability toward enhanced copper and silver recovery from old waste at Solnechny GOK. Mining Informational and Analytical Bulletin. 2023;(1):119–129. (In Russ.) https://doi.org/10.25018/0236_1493_2023_1_0_119

15. Бырько В.М. Дитиокарбаматы. М.: Наука; 1984. 342 с.

16. Burdonov A.E., Vchislo N.V., Verochkina E.A., Rozentsveig I.B. Synthesis of new dithiocarbamate and xanthate complexes and their application in enrichment processes. Proceedings of Universities. Applied Chemistry and Biotechnology. 2023;13(2):160–171. (In Russ.) https://doi.org/10.21285/2227-2925-2023-13-2-160-171

17. Matveeva T.N., Minaev V.A., Gromova N.K. Determining modes of thiol collector attachment at sulfide minerals by optical, electron scanning and laser microscopy. Journal of Mining Science. 2023;59(4):673–680. https://doi.org/10.1134/S106273912304018X

18. Доброшевский К.Н. Геологическая позиция и минералого-геохимические особенности Малиновского золоторудного месторождения (Центральное Приморье) [автореф. дис. … канд. геол.-минерал. наук]. Владивосток; 2019. 30 с.

19. Чантурия В.А., Вигдергауз В.Е. Электрохимия сульфидов. Теория и практика флотации. М.: Руда и металлы; 2008. 272 с.