Using second row vanes to reduce hydraulic losses in a centrifugal pump
D.S. Dyak, M.G. Rakhutin
National University of Science and Technology “MISIS”, Moscow, Russian Federation
Russian Mining Industry №5S/ 2025 p. 206-210
Abstract: The article considers a method for reducing hydraulic losses of a mine drainage centrifugal pump by adding second-row blades using the example of the CNS-300-120 impeller. The added blades cut down the energy losses by reducing the fluid turbulence at the impeller outlet. A model with two rows of blades is proposed. Computer modeling of the impeller and hydraulic fluid flow in the SolidWorks 2022 and the Ansys CFX software suites showed that the proposed method allows increasing the pressure at the operating point by 3.2–6.1% and the hydraulic efficiency by 3.0–6.0%. The method is most effective at the operating point with pressure values of H = 120 m and flow rate of Q = 300 m3/h in the working area. Outside the working area, the efficiency of the method decreases. Using the pump outside the permissible operating range is not recommended due to the risk of cavitating, overheating of the pumped medium, flow path, electric drive, and increased internal working fluid flow. This results in a significant reduction in the overall efficiency, which can lead to accelerated wear and failure of the pump.
Keywords: sectional centrifugal pump, hydraulic efficiency, impeller, second row blades, mine drainage, computer modeling
For citation: Dyak D.S., Rakhutin M.G. Using second row vanes to reduce hydraulic losses in a centrifugal pump. Russian Mining Industry. 2025;(6):206–210. (In Russ.) https://doi.org/10.30686/1609-9192-2025-6-206-210
Article info
Received: 27.08.2025
Revised: 27.10.2025
Accepted: 07.11.2025
Information about the authors
Maxim G. Rakhutin – Dr. Sci. (Eng.), Professor, Mining Institute, National University of Science and Technology “MISIS”, Moscow, Russian Federation; https://orcid.org/0000-0001-5873-5550; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Dmitry S. Dyak – Postgraduate Student, Mining Institute, National University of Science and Technology “MISIS”, Moscow, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Husveg R., Husveg T., van Teeffelen N., Ottestad M., Hansen M.R. Improving separation of oil and water with a novel coalescing centrifugal pump. SPE Production & Operations. 2018;33(4):857–865. https://doi.org/10.2118/188772-pa
2. Gradilenko N., Lomakin V. Overview of methods for optimizing the flow of the centrifugal pump. IOP Conference Series: Materials Science and Engineering. 2020;963:012016. https://doi.org/10.1088/1757-899x/963/1/012016
3. Volkov A.V., Parygin A.G., Vikhliantsev A.A., Druzhinin A.A., Naumov A.V., Markov D.V. et al. Analysis of domestic centrifugal pumps improvement opportunities for the oil and gas and chemical industry. Gidravlika. 2016;(2):1–13. (In Russ.) Available at: https://hydrojournal.ru/images/JOURNAL/NUMBER2/Volkov.pdf (accessed: 12.05.2025).
4. Aleksandrov V.I., Avksent’ev S.Yu., Makharatkin P.N. Energy efficiency of mine water outflow. Mining Informational and Analytical Bulletin. 2017;(2):253–268. (In Russ.) Available at: https://giab-online.ru/files/Data/2017/2/253_268_2_2017.pdf (accessed: 12.05.2025).
5. Ovchinnikov N.P. Assessment of mine water solid phase impact on section pumps performance in the development of kimberlite ores. Mining Science and Technology (Russia). 2022;7(2):150–160. https://doi.org/10.17073/2500-0632-2022-2-150-160
6. Galdin D.N., Kretinin A.V., Pechkurov S.V. Optimization of the spatial impeller profile of a centrifugal pump using a parametrized model of a flow part and an artificial neural network. Pumps. Turbines. Systems. 2021;(3):22–31. (In Russ.)
7. Churakov E.O., Makarov V.N., Makarov N.V., Belskikh A.M. Stages of technical improvement of mine drainage centrifugal pumps. Transbaikal State University Journal. 2024;30(1):81–89. (In Russ.) Available at: https://zabvestnik.com/wp-content/uploads/031024031010-Churakov.pdf (accessed: 12.05.2025).
8. Yasser E., El-Emam M.A., Bai L., Zhou L. Numerical investigation of particle behavior and erosion wear in a centrifugal pump using coarse-grained Discrete Element Method. Particulate Science and Technology. 2024;42(8):1361–1379. https://doi.org/10.1080/02726351.2024.2388541
9. Zotov V.V., Mnatsakanyan V.U., Bazlin M.M., Lakshinsky V.S., Dyatlova E.V. Extending the service life of centrifugal dewatering pump impellers in mines. Russian Mining Industry. 2024;(2):143–146. (In Russ.) https://doi.org/10.30686/1609-9192-2024-2-143-146
10. Rizaev A.A., Abduazizov N.A. Investigation of wear of impeller of centrifugal pumps and choice of method of increasing wear resistance of pump impeller. Universum: Tekhnicheskie nauki. 2023;(7-2):58–60. (In Russ.) Available at: https://7universum.com/pdf/tech/7(112)%20[15.07.2023]/Rizaev.pdf (accessed: 12.05.2025).
11. Yüksel O., Köseoğlu B.. Energy efficiency optimization on centrifugal pumps: a content analysis. In: 1st International Congress on Ship and Marine Technology, Green Technologies, İstanbul, Türkiye, 8–9 December 2016, pp. 781–795. https://www.researchgate.net/publication/311706614
12. Zhang J., Yuan Y., Yuan S., Lu W., Yuan J. Experimental studies on the optimization design of a low specific speed centrifugal pump. In: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, July 24–29, 2011, Hamamatsu, Japan. 2011, pp. 561–569. https://doi.org/10.1115/ajk2011-22005
13. Nandan R., Pasha S.M., Ashish D., Nookaraju B.Ch. Computational fluid dynamics (CFD) analysis of centrifugal pumps. E3S Web of Conferences. 2023;391:01088. https://doi.org/10.1051/e3sconf/202339101088
14. Wang C.-N., Yang F.-C., Nguyen V.T.T., Vo N.T.M. CFD analysis and optimum design for a centrifugal pump using an effectively artificial intelligent algorithm. Micromachines. 2022;13(8):1208. https://doi.org/10.3390/mi13081208
15. Ivanov E.A., Zharkovsky A.A., Borshchev I.O. Increase of hydraulic efficiency and pulsation characteristics of multistage centrifugal pumps. St. Petersburg State Polytechnic University Journal of Engineering Science and Technology. 2018;24(3):126–138. (In Russ.) https://doi.org/10.18721/JEST.240311
16. Spiridonov E.K., Prokhas'ko L.S. Calculation and design of vane pumps. Chelyabinsk: Izd-vo YuUrGU; 2004. 62 p. (In Russ.)
17. Gabdulov I.N. Calculation of a centrifugal pump impeller. Alleya Nauki. 2019;(9):242–251. (In Russ.) Available at: https://alley-science.ru/domains_data/files/05September2019/RASChET%20RABOChEGO%20KOLESA%20CENTROBEZhNOGO%20NASOSA.pdf (accessed: 12.05.2025).
18. Nossir E., Elkelawy M., Mohamad H.A.E., Elsamadony M. A comprehensive review and background on centrifugal pump performance under multiphase flow and varying operating conditions. Pharos Engineering Science Journal. 2025;2(1):117–128. https://doi.org/10.21608/pesj.2025.371163.1026
19. Savin L.A., Grigoriev S.V., Shaxbanov R.M. Possibility of improvement energy performance of centrifugal pumps. News of the Tula State University. Technical Sciences. 2015;(7-2):122–127. (In Russ.)
20. Li W.-G. Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller. International Journal of Heat and Fluid Flow. 2000;21(2):207–212. https://doi.org/10.1016/s0142-727x(99)00078-8
21. Ageev Sh.R., Grigoryan E.E., Makienko G.P. Russian vane pump units for oil production and their application. Encyclopedic reference book. Perm': OOO «Press-Master»; 2007. 645 p. (In Russ.)
22. Nguyen V.T.T., Vo T.M.N. Centrifugal pump design: An optimization. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics. 2022;17:136–151. Available at: https://dergipark.org.tr/en/download/article-file/2653833 (accessed: 12.05.2025).
23. Popov V.M. Mine pumps (theory, calculation, operation). Moscow: Nedra; 1993. 224 p. (In Russ.)
24. Kuznetsov A.V., Panaiotti S.S., Savelev A.I. Computer-aided design of a multistage centrifugal pump. Kaluga; 2013. 170 p. (In Russ.)
25. Tverdokhleb I.B., Knyazeva E.G., Biryukov A.I., Lugovaya S.O. To the question of creating the flow part of a multistage pump with minimal radial dimensions. In: GERVICON-2011: proceedings of the 13th International Scientific and Technical Conference, Sumy, September 6–9, 2011. (In Russ.) Available at: https://mnz.ru/stati/7-k-voprosu-o-sozdanii-protochnoj-chastimnogostupenchatogo-asosa-s-minimalnymi-radialnymi-razmerami (accessed: 12.05.2025).
26. Zhao Z., Bai L., Su X., Chen J., Qu B., Zhou L. Computational fluid dynamics – discrete element method simulation and experimental study of particle transport mechanism in a centrifugal pump. Physics of Fluids. 2025;37(2):023380. https://doi.org/10.1063/5.0256782
27. Valyukhov S.G., Galdin D.N., Obolonskaya E.M., Fofonov Y.A. Numerical study of the impeller blade shape influence of a centrifugal pump on pressure pulsation. Pumps. Turbines. Systems. 2023;(2):78–89. (In Russ.)



