Improvement of the algorithm for calculating the stress-strain state of a rock mass when measuring strains using the stress relief method at the borehole bottom
I.E. Semenova1, P.V. Amosov2, N.N. Kuznetcov1, V.A. Nekrasov1
1 Mining Institute, Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
2 Institute of North Industrial Ecology Problems, Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation
Russian Mining Industry №5 / 2025 p. 84-90
Abstract: The paper is a continuation of the research on calculating parameters of the stress-strain state of the rock mass based on in-situ measurements. An algorithm is described that allows combining the approaches of the Mining Institute of the Kola Science Centre of the RAS and those of E.R. Leeman to calculate the stresses acting in the rock mass and determined on the basis of data obtained by the stress relief method when measured at the borehole bottom. The mathematical apparatus for calculating the components of the stress tensor in the plane of the bottom-hole surface of three mutually perpendicular boreholes is given when the choice of directions of two of them coincides with the directions of the main stresses at the bottom of the third borehole. The situation of using a four-gauge rosette is analyzed for layouts with the angles of 0, 60, 120 and 90°. Two possible algorithms for the calculation of the normal stress components are presented, as well as the results of calculations based on the experimental data obtained during the measurements of the stress-strain state in a rock mass of the Zhdanovskoye deposit. A comparative analysis of the obtained predicted values of the maximum and minimum stresses by the criterion of deviation by ±10% from the mean was carried out. Application of the least squares method gives the values of the maximum and minimum stresses close to the results of the enumeration of 16 possibilities.
Keywords: stress-strain state, rock mass, doorstopper method, borehole, strain-gauge rosette
For citation: Semenova I.E., Amosov P.V., Kuznetcov N.N., Nekrasov V.A. Improvement of the algorithm for calculating the stress-strain state of a rock mass when measuring strains using the stress relief method at the borehole bottom. Russian Mining Industry. 2025;(5):84–90. (In Russ.) https://doi.org/10.30686/1609-9192-2025-5-84-90
Article info
Received: 11.05.2025
Revised: 09.07.2025
Accepted: 14.07.2025
Information about the authors
Inna E. Semenova – Cand. Sci. (Eng.), Head of Department of Rock Mechanics, Mining Institute, Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0003-4074-7240 ; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Pavel V. Amosov – Cand. Sci. (Eng.), Leading researcher of the Laboratory of Interdisciplinary Ecological and Economic Research, Institute of North Industrial Ecology Problems, Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0002-7725-6261 ; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Nikolai N. Kuznetcov – Cand. Sci. (Eng.), Head of the Laboratory of Instrumental Study of Rock’s State of the Russian Arctic Region, Department of Rock Mechanics, Mining Institute, Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; https://orcid.org/0000-0002-0624-4351 ; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Valery A. Nekrasov – Leading Engineer of the Laboratory of Instrumental Study of Rock’s State of the Russian Arctic Region, Department of Rock Mechanics, Mining Institute, Kola Science Centre of the Russian Academy of Sciences, Apatity, Russian Federation; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
References
1. Козырев А.А., Панин В.И., Семенова И.Э. Опыт применения экспертных систем оценки напряженно-деформированного состояния массива горных пород для выбора безопасных способов отработки рудных месторождений. Записки Горного института. 2012;198:16–23. Режим доступа: https://pmi.spmi.ru/pmi/article/view/5908 (дата обращения: 27.04.2025). Kozyrev A.A., Panin V.I., Semenova I.E. Experience in expert systems application for estimation of stress- strain state of rock mass for selection of safe methods of ore deposits mining. Journal of Mining Institute. 2012;198:16–23. (In Russ.) Available at: https://pmi.spmi.ru/pmi/article/view/5908 (accessed: 27.04.2025).
2. Криницын Р.В. Напряженно-деформированное состояние массива горных пород при отработке месторождений Урала. Горная промышленность. 2022;(5):79–82. https://doi.org/10.30686/1609-9192-2022-5-79-82 Krinitsyn R.V. Stress-and-strain state of the rock mass in mining deposits in the Urals. Russian Mining Industry. 2022;(5):79– 82. (In Russ.) https://doi.org/10.30686/1609-9192-2022-5-79-82
3. Adah E.I., Amah E.A. Modified horizontal stress equations for rock mass insitu stress state. Nnamdi Azikiwe University Journal of Civil Engineering (NAUJCVE). 2024;2(3):11–14. Available at: https://naujcve.com/index.php/NAUJCVE/article/view/134/139 (accessed: 20.06.2025).
4. Demin V., Kalinin A., Tomilova N., Tomilov A., Akpanbayeva A., Shokarev D., Popov A. Advanced digital modeling of stressstrain behavior in rock masses to ensure stability of underground mine workings. Civil Engineering Journal. 2025;11(3):1072– 1087. https://doi.org/10.28991/CEJ-2025-011-03-014
5. Christiansson R., Janson T. A test of different stress measurement methods in two orthogonal bore holes in Äspö Hard Rock Laboratory (HRL), Sweden. International Journal of Rock Mechanics and Mining Sciences. 2003;40(7-8):1161–1172. https://doi.org/10.1016/j.ijrmms.2003.07.006
6. Yaméogo S.T., Corthésy R., Leite M.H. Influence of local heterogeneity on Doorstopper stress measurements. International Journal of Rock Mechanics and Mining Sciences. 2013;60:288–300. https://doi.org/10.1016/j.ijrmms.2013.01.001
7. Guido S., Acerbis R., Sossi G. Practice of the Doorstopper stress measurement method during the last 30 years in Italy. IOP Conference Series: Earth and Environmental Science. 2021;833:012167. https://doi.org/10.1088/1755-1315/833/1/012167
8. Feng Y., Pan P.-Z., Wang Z., Liu X., Miao S. A novel indirect optical method for rock stress measurement using microdeformation field analysis. Journal of Rock Mechanics and Geotechnical Engineering. 2024;16(9):3616–3628 https://doi.org/10.1016/j.jrmge.2023.10.011
9. Семенова И.Э., Амосов П.В., Кузнецов Н.Н., Некрасов В.А. Развитие подходов к расчету параметров напряженнодеформированного состояния массива пород по результатам измерений деформаций на торце скважины. Горная промышленность. 2024;(5S):122–129. https://doi.org/10.30686/1609-9192-2024-5S-122-129 Semenova I.E., Amosov P.V., Kuznetcov N.N., Nekrasov V.A. Development of approaches to calculation of the stress-strain state parameters of the rock mass based on the results of deformation measurements at the borehole bottom. Russian Mining Industry. 2024;(5S):122–129. (In Russ.) https://doi.org/10.30686/1609-9192-2024-5S-122-129
10. Ali Z., Karakus M., Nguyen G.D., Amrouch K. Secant modulus method: A simplified technique for measuring in situ stresses in rocks. Rock Mechanics and Rock Engineering. 2025;58(4):4263–4279. https://doi.org/10.1007/s00603-024-03953-z
11. Leeman E.R. The CSIR “doorstopper” and triaxial rock stress measuring instruments. Rock Mechanics. 1971;3(1):25–50. https://doi.org/10.1007/BF01243550
12. Кобаяси А. (ред.) Экспериментальная механика [пер. с англ. под ред. Б.Н. Ушакова]. М.: Мир; 1990. Кн. 1. 615 с. :
13. Мехеда В.А. Тензометрический метод измерения деформаций. Самара: Изд-во Самар. гос. аэрокосм. ун-та; 2011. 56 с.
14. Деменчук Н.П., Прилуцкий А.А. Основы теории напряженного и деформированного состояния. СПб.: Университет ИТМО; 2016. 118 с.
15. Реут Л.Е. Теория напряженного и деформированного состояния с примерами и задачами. Минск: БИТУ; 2008. 107 с.
16. Водопьянов В.И., Савкин А.Н., Кондратьев О.В. Курс сопротивления материалов с примерами и задачами. Волгоград: ВолгГТУ; 2012. 136 с.
17. Иофис М.А., Макаров А.Б., Каспарьян Э.В., Козырев А.А. Геомеханика и охрана объектов поверхности. М.: Высш. шк.; 2006. 503 с.
18. Турчанинов И.А., Иванов В.И., Марков Г.А. (сост.) Руководство по измерению напряжений в массиве скальных пород методом разгрузки: вариант торцевых измерений. Апатиты; 1970. 48 с.
19. Турчанинов И.А., Марков Г.А., Панин В.И., Иванов В.И. (сост.) Экспериментальное определение полного тензора напряжений в массиве горных пород. Апатиты; 1973. 37 с.
20. Мудров В.И., Кушко В.Л. Методы обработки измерений. М.: Сов. радио; 1976. 192 с.
21. Лоусон Ч., Хенсон Р. Численное решение задач метода наименьших квадратов [пер. с англ. Х.Д. Икрамова]. М.: Наука; 1986. 230 с.
22. Барон Л.И., Логунцов Б.М., Позин Е.З. Определение свойств горных пород. М.: Госгортехиздат; 1962. 332 с.

