Выявление опасных участков на основе исследования развития техногенных трещин в толще слагающих массив пород
Е.С. Жерлыгина, М.Е. Куранова, В.Н. Гусев, Е.Е. Одинцов
Санкт-Петербургский горный университет императрицы Екатерины II, г. Санкт-Петербург, Российская Федерация
Russian Mining Industry №1 / 2025 p. 162-169
Резюме: В статье приведены данные о рисках отсутствия регулярного мониторинга опасных участков по образованию техногенных трещин. Изложены особенности геологического строения массива месторождения первично и повторно подрабатываемых пород, а также закономерности развития опасных техногенных трещин. Обоснована зависимость высоты развития зоны водопроводящих трещин от суммарной мощности последовательно вынимаемых пластов свиты. Установлено, что данные параметры связаны экспоненциальной функцией, адаптируемой под особенности горно-геологических условий. Представлено, как использование данной зависимости позволяет выявлять опасные участки развития водопроводящих техногенных трещин. Разработанный подход дает возможность оперативного применения мер охраны, обеспечивает безопасное управление кровлей массива горных пород, а также позволяет прогнозировать размеры зон техногенной трещиноватости. Результаты исследования могут быть полезными при необходимости оценки высоты развития техногенных трещин и в частных случаях для уточнения необходимости соблюдения параметра безопасной глубины, требующей оставления весьма большого запаса полезного ископаемого в охранных целиках. Описанный подход по выявлению опасных участков может быть распространен на другие месторождения полезных ископаемых.
Ключевые слова: геомеханическая безопасность, горные работы, опасные участки, зоны водопроводящих трещин, состояние массива, безопасное производство
Для цитирования: Жерлыгина Е.С., Куранова М.Е., Гусев В.Н., Одинцов Е.Е. Выявление опасных участков на основе исследования развития техногенных трещин в толще слагающих массив пород. Горная промышленность. 2025;(1):162–169. https://doi.org/10.30686/1609-9192-2025-1-162-169
Информация о статье
Поступила в редакцию: 02.11.2024
Поступила после рецензирования: 09.01.2025
Принята к публикации: 15.01.2025
Информация об авторах
Жерлыгина Екатерина Сергеевна – кандидат технических наук, доцент, старший научный сотрудник, СанктПетербургский горный университет императрицы Екатерины II, г. Санкт-Петербург, Российская Федерация; https://orcid.org/0000-0003-3404-0863; e-mail: zherlygina_ES@pers.spmi.ru
Куранова Милитина Евгеньевна – кандидат технических наук, старший научный сотрудник, Санкт-Петербургский горный университет императрицы Екатерины II, г. СанктПетербург, Российская Федерация; https://orcid.org/0000-0002-8198-0252; e-mail: melnitskaya.prmpi@mail.ru
Гусев Владимир Николаевич – доктор технических наук, профессор, заведующий кафедрой маркшейдерского дела, Санкт-Петербургский горный университет императрицы Екатерины II, г. Санкт-Петербург, Российская Федерация; https://orcid.org/0000-0003-3148-9729; e-mail: kmd@spmi.ru
Одинцов Егор Евгеньевич – аспирант, Санкт-Петербургский горный университет императрицы Екатерины II, г. Санкт-Петербург, Российская Федерация; https://orcid.org/0009-0008-3424-0148; e-mail: odintsovgeorge@gmail.com
Вклад авторов
Е.С Жерлыгина – концептуализация статьи, подготовка методологии проверки данных, постановка задачи исследования.
М.Е. Куранова – анализ результатов исследования, поиск и подготовка исходных данных.
В.Н. Гусев – генерация идеи исследования.
Е.Е. Одинцов – выполнение научного обзора современных методов оценки влияния геомеханических параметров, написание и редактирование текста статьи.
Список литературы
1. Ломов М.А. Аварии в горной промышленности в России, произошедшие вследствие динамических проявлений в горном массиве. контроль горного давления на месторождении «Южное» (Приморский край). Проблемы недропользования. 2023;(1):85–92. https://doi.org/10.25635/2313-1586.2023.01.085 Lomov M.A. Accidents in the mining industry in Russia that occurred as a result of dynamic manifestations in the mountain range. control of mountain pressure at the Yuzhnoye field (Primorsky krai). Problems of Subsoil Use. 2023;(1):85–92. (In Russ.) https://doi.org/10.25635/2313-1586.2023.01.085
2. Зимин И.И. Обеспечение геодинамической безопасности при реализации проектов по консервации (ликвидации) угольных шахт. Наукоемкие технологии разработки и использования минеральных ресурсов. 2015;(2):327–330. Zimin I.I. Ensuring geodynamic safety in implementation of coal mine conservation (abandonment) projects. Naukoemkie Tekhnologii Razrabotki i Ispolzovaniya Mineralnykh Resursov. 2015;(2):327–330. (In Russ.)
3. Gusev V.N., Maliukhna E.M., Volohov E.M., Tulenev M.A., Gubin M.Y. Assessment of development of water conducting fractures zone in the massif over crown of arch of tunneling (construction). International Journal of Civil Engineering and Technology. 2019;10(2):635–643.
4. Шабаров А.Н., Куранов А.Д. Основные направления развития горнодобывающей отрасли в усложняющихся горнотехнических условиях ведения горных работ. Горный журнал. 2023;(5):5–10. https://doi.org/10.17580/gzh.2023.05.01 Shabarov A.N., Kuranov A.D. Basic development trends in mining sector in complicating geotechnical conditions. Gornyi Zhurnal. 2023;(5):5–10. (In Russ.) https://doi.org/10.17580/gzh.2023.05.01
5. Ju M., Wang D., Shi J., Li J., Yao Q., Li X. Physical and numerical investigations of bedding adhesion strength on stratified rock roof fracture with longwall coal mining. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2021;7:24. https://doi.org/10.1007/s40948-020-00209-2
6. Соловьев С.В., Кузиев Д.А. Исследование жесткостных параметров привода тягового механизма драглайна ЭШ-10/70. Уголь. 2017;(1):37–38. Режим доступа: https://ugolinfo.ru/index.php?article=201701037 (дата обращения: 01.12.2024). Soloviev S.V., Kuziev D.A. Dragline ESH-10/70 linkage stiffness parameters study. Ugol’. 2017;(1):37–38. (In Russ.) Available at: https://ugolinfo.ru/index.php?article=201701037 (accessed: 01.12.2024).
7. Тюляева Ю.С., Хайрутдинов А.М. Создание закладочного композита на основе отходов угольной промышленности. Уголь. 2024;(10):24–27. Режим доступа: https://ugolinfo.ru/index.php?article=202410024 (дата обращения: 01.12.2024). Tyulyaeva Yu.S., Khayrutdinov A.M. Creation of a backfill composite based on coal industry waste. Ugol’. 2024;(10):24–27. (In Russ.) Available at: https://ugolinfo.ru/index.php?article=202410024 (accessed: 01.12.2024).
8. Илюхин Д.А. Прогноз развития зоны водопроводящих трещин при разработке Яковлевского месторождения богатых железных руд: автореф. дис. … канд. техн. наук. СПб.; 2014. 125 с.
9. Господариков А.П., Киркин А.П., Трофимов А.В., Ковалевский В.Н. Определение физико-механических свойств горных пород при применении противоударных разгрузочных мероприятий. Горный журнал. 2023;(1):26–34. https://doi.org/10.17580/gzh.2023.01.04 Gospodarikov A.P., Kirkin A.P., Trofimov A.V., Kovalevsky V.N. Determination of physical and mechanical properties of rocks using anti-burst destress measures. Gornyi Zhurnal. 2023;(1):26–34. (In Russ.) https://doi.org/10.17580/gzh.2023.01.04
10. Протосеня А. Г., Веселова А. В., Котиков Д. А. Оценка концентрации напряжений вблизи карстовых полостей при разработке рудных месторождений. Горный информационно-аналитический бюллетень. 2024;(2):5–22. https://doi.org/10.25018/0236_1493_2024_2_0_5 Protosenya A. G., Veselova A. V., Kotikov D. A. Assessment of stress concentration in neighborhood of karst voids during ore mining. Mining Informational and Analytical Bulletin. 2024;(2):5–22. (In Russ.) https://doi.org/10.25018/0236_1493_2024_2_0_5
11. Барях А.А., Девятков С.Ю., Денкевич Э.Т. Математическое моделирование развития процесса сдвижения при отработке калийных руд длинными очистными забоями. Записки Горного института. 2023;259:13–20. https://doi.org/10.31897/PMI.2023.11 Baryakh A.A., Devyatkov S.Y., Denkevich E.T. Mathematical modelling of displacement during the potash ores mining by longwall faces. Journal of Mining Institute. 2023;259:13–20. https://doi.org/10.31897/PMI.2023.11
12. Клементьева И.Н., Кузиев Д.А. Выемочно-погрузочный драглайн с ковшом инновационной конструкции. Горный информационно-аналитический бюллетень. 2019;(7):149–157. https://doi.org/10.25018/0236-1493-2019-07-0-149-157 Klementyeva I.N., Kuziev D.A. Extracting-and-loading dragline with innovative design bucket. Mining Informational and Analytical Bulletin. 2019;(7):149–157. (In Russ.) https://doi.org/10.25018/0236-1493-2019-07-0-149-157
13. Кузин А.А., Филиппов В.Г. Метод определения плановых координат и высоты рабочего репера на оползне с принудительными отклонениями вехи от отвесного положения. Геодезия и картография. 2024;85(9):2–11. https://doi.org/10.22389/0016-7126-2024-1011-9-2-11 Kuzin A.A., Filippov V.G. Method for determining the plan view coordinates and height of the working benchmark on a landslide with forced inclinations of the pole from the plumb position. Geodesy and Cartography. 2024;85(9):2–11. (In Russ.) https://doi.org/10.22389/0016-7126-2024-1011-9-2-11
14. Конгар-Сюрюн Ч.Б., Ковальский Е.Р. Твердеющие закладочные смеси на калийных рудниках: перспективные материалы, регулирующие напряжённо-деформированное состояние массива. Геология и геофизика Юга России. 2023;13(4):177–187. https://doi.org/10.46698/VNC.2023.34.99.014 Kongar-Syuryun Ch.B., Kovalski E.R. Hardening backfill at potash mines: promising materials regulating stress-strain behavior of rock mass. Geology and Geophysics of Russian South. 2023;13(4):177–187. (In Russ.) https://doi.org/10.46698/VNC.2023.34.99.014
15. Liu B., Xue J., Lehane B.M. Centrifuge investigation of soil–foundation–superstructure interaction under static loading. Engineering Structures. 2023;281:115779. https://doi.org/10.1016/j.engstruct.2023.115779
16. Трушко В.Л., Баева Е.К. Обоснование рациональных параметров крепи комплекса горных выработок, проводимых в сложных горно-геологических условиях. Горный информационно-аналитический бюллетень. 2023;(12):55–69. Режим доступа: https://giab-online.ru/catalog/obosnovanie-racionalnyh-parametrov-krepi-kompleksa-gornyh-vyrabo (дата обращения: 01.12.2024). Trushko V.L., Baeva E.K. Substantiation of rational parameters of mine support system for underground roadways in difficult geological conditions. Mining Informational and Analytical Bulletin. 2023;(12):55–69. (In Russ.) Available at: https://giab-online.ru/catalog/obosnovanie-racionalnyh-parametrov-krepi-kompleksa-gornyh-vyrabo (accessed: 01.12.2024).
17. Волохов Е. М., Бритвин И. А., Кожухарова В. К. Проблемы обеспечения достоверности прогноза сдвижений поверхности при строительстве станционных комплексов метрополитена глубокого заложения. Горный информационноаналитический бюллетень. 2024;(5):36–61. https://doi.org/10.25018/0236_1493_2024_5_0_36 Volokhov E.M., Britvin I.A., Kozhukharova V.K. Reliability of ground surface movement prediction in construction of stationary facilities in deep subways. Mining Informational and Analytical Bulletin. 2024;(5):36–61. (In Russ.) https://doi.org/10.25018/0236_1493_2024_5_0_36
18. Taheri S.R., Pak A., Shad S., Mehrgini B., Razifar M. Investigation of rock salt layer creep and its effects on casing collapse. International Journal of Mining Science and Technology. 2020;30(3):357–365. https://doi.org/10.1016/j.ijmst.2020.02.001
19. Зубов В.П., Сокол Д.Г. Технологии интенсивной разработки калийных пластов длинными очистными забоями на больших глубинах: актуальные проблемы, направления совершенствования. Записки Горного института. 2023;264:874–885. Режим доступа: https://pmi.spmi.ru/pmi/article/view/14924 (дата обращения: 01.12.2024). Zubov V.P., Sokol D.G. Technologies of intensive development of potash seams by longwall faces at great depths: current problems, areas of improvement. Journal of Mining Institute. 2023;264:874–885. Available at: https://pmi.spmi.ru/pmi/article/view/14924 (accessed: 01.12.2024).
20. Liu W.-R. Experimental and numerical study of rock stratum movement characteristics in longwall mining. Shock and Vibration. 2019;2019:5041536. https://doi.org/10.1155/2019/5041536
21. Куранов А.Д., Багаутдинов И.И., Котиков Д.А., Зуев Б.Ю. Комплексный подход к обеспечению устойчивости предохранительных столбов при отработке нарезных пластов на Яковлевском месторождении. Горный журнал. 2020;(1):115– 119. https://doi.org/10.17580/gzh.2020.01.23 Kuranov A.D., Bagautdinov I.I., Kotikov D.A., Zuev B.Yu. Integrated approach to safety pillar stability in slice mining in the Yakovlevo deposit. Gornyi Zhurnal. 2020;(1):115–119. (In Russ.) https://doi.org/10.17580/gzh.2020.01.23
22. Nguyen T.T., Do N.A., Karasev M.A., van Kien D., Dias D. Influence of tunnel shape on tunnel lining behaviour. Geotechnical Engineering. 2021;174(4):355–371. https://doi.org/10.1680/jgeen.20.00057
23. Mikolas M., Mikusinec J., Abrahamovsky J., Dibdiakova J., Tyulyaeva Y., Srek J. Activities of a Mine Surveyor and a Geologist at Design Bases in a Limestone Quarry. IOP Conference Series: Earth and Environmental Science. 2021;906:012073. https://doi.org/10.1088/1755-1315/906/1/012073
24. Bacova D., Khairutdinov A.M., Gago F. Cosmic geodesy contribution to geodynamics monitoring. IOP Conference Series: Earth and Environmental Science. 2021;906:012074. https://doi.org/10.1088/1755-1315/906/1/012074
25. Pascariello M.N., Luciano A., Bilotta E., Acikgoz S., Mair R. Numerical modelling of the response of two heritage masonry buildings to nearby tunnelling. Tunnelling and Underground Space Technology. 2023;131:104845. https://doi.org/10.1016/j.tust.2022.104845
26. Wang F., Tu S., Zhan C., Zhang Y., Bai Q. Evolution mechanism of water-flowing zones and control technology for longwall mining in shallow coal seams beneath gully topography. Environmental Earth Sciences. 2016;75:1309. https://doi.org/10.1007/s12665-016-6121-4
27. Ritter S., Giardina G., Franza A., DeJong M.J. Building deformation caused by tunneling: centrifuge modeling. Journal of Geotechnical and Geoenvironmental Engineering. 2020;146(5):04020017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002223
28. Xu J., Franza A., Marshall A.M. Response of framed buildings on raft foundations to tunneling. Journal of Geotechnical and Geoenvironmental Engineering. 2020;146(11):04020120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002376
29. Каунг П.А., Семикин А.А., Хайрутдинов А.М., Дехтяренко А.А. Вовлечение техногенных отходов в переработку – парадигма ресурсного обеспечения устойчивого развития. Устойчивое развитие горных территорий. 2023;15(2):385–397. Kaung P.F., Semikin A.A., Khayrutdinov A.M., Dekhtyarenko A.A. Recycling of industrial waste is a paradigm of resource provision for sustainable development. Sustainable Development of Mountain Territories. 2023;15(2):385–397. (In Russ.)
30. Wang J., Li S., Li L., Shi S., Zhou Z., Song S. Mechanism of water inrush in fractures and block collapse under hydraulic pressure. Mathematics and Computers in Simulation. 2020;177:625–642. https://doi.org/10.1016/j.matcom.2020.05.028
31. Кузиев Д.А., Пятова И.Ю., Клементьева И.Н., Пихторинский Д. Алгоритм определения максимальной мощности привода подачи карьерного бурового станка. Горный информационно-аналитический бюллетень. 2019;(1):128–133. Kuziev D.A., Pyatova I.Yu., Klement'eva I.N., Pikhtorinsky D. Algorithm for the determination of maximum feed drive power of drilling rigs in open pit mining. Mining Informational and Analytical Bulletin. 2019;(1):128–133. (In Russ.)
32. Guo J., Wu W., Liu X., Huang X., Zhu Z. Theoretical analysis on safety thickness of the water-resistant rock mass of karst tunnel face taking into account seepage effect. Geotechnical and Geological Engineering. 2022;40:697–709. https://doi.org/10.1007/s10706-021-01916-7
33. Huang F., Zhao L.-H., Ling T.-H., Yang X.-L. Rock mass collapse mechanism of concealed karst cave beneath deep tunnel. International Journal of Rock Mechanics and Mining Sciences. 2017;91:133–138. https://doi.org/10.1016/j.ijrmms.2016.11.017
34. Zhang Q., Wang J., Feng L. Mechanical mechanism of hydraulic fracturing effect caused by water inrush in tunnel excavation by blasting. Mathematical Problems in Engineering. 2021;2021:9919260. https://doi.org/10.1155/2021/9919260
35. Zhao C., Schmüdderich C., Barciaga N., Röchter R. Response of building to shallow tunnel excavation in different types of soil. Computers and Geotechnics. 2019;115:103165. https://doi.org/10.1016/j.compgeo.2019.103165
36. Jian Y., Leung C.F., Maosong H., Tan J.Q.W. Assessment of settlement-based strain in masonry building facade due to tunneling. Computers and Geotechnics. 2022;144:104658. https://doi.org/10.1016/j.compgeo.2022.104658